ESTUDOS PARA A EXPANSÃO DA TRANSMISSÃO

ANÁLISE TÉCNICO-ECONÔMICA DE ALTERNATIVAS: RELATÓRIO R1

Estudo para Escoamento do Potencial Eólico e Fotovoltaico da Região do Seridó

GOVERNO FEDERAL MINISTÉRIO DE MINAS E ENERGIA

Ministério de Minas e Energia Ministro

Fernando Coelho Filho

Secretário-Executivo do MME

Paulo Jerônimo Bandeira de Mello Pedrosa

Secretário de Planejamento e Desenvolvimento **Energético**

Eduardo Azevedo Rodrigues

Secretário de Energia Elétrica

Fabio Lopes Alves

Secretário de Petróleo, Gás Natural e Combustíveis Renováveis

Márcio Félix Carvalho Bezerra

Secretário de Geologia, Mineração e Transformação

Vicente Humberto Lôbo Cruz

ESTUDOS PARA A LICITAÇÃO DA **EXPANSÃO DA TRANSMISSÃO**

ANÁLISE TÉCNICO-ECONÔMICA **DE ALTERNATIVAS: RELATÓRIO R1**

Estudo para Escoamento do Potencial Eólico e Fotovoltaico da Região do Seridó

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei nº 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente

Luiz Augusto Nóbrega Barroso

Diretor de Estudos Econômico-Energéticos e **Ambientais**

Ricardo Gorini de Oliveira

Diretor de Estudos de Energia Elétrica

Amilcar Gonçalves Guerreiro

Diretor de Estudos de Petróleo, Gás e **Biocombustíveis**

Gelson Baptista Serva

Diretor de Gestão Corporativa

Álvaro Henrique Matias Pereira

URL: http://www.epe.gov.br

SCN, Quadra 1, Bloco C, nº 85, Sl. 1712/1714

70711-902 - Brasília - DF

Escritório Central

Av. Rio Branco, 01 - 11º Andar 20090-003 - Rio de Janeiro - RJ

Coordenação Geral

Luiz Augusto Nóbrega Barroso Amilcar Gonçalves Guerreiro Ricardo Gorini de Oliveira

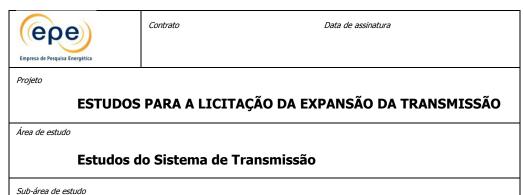
Coordenação Executiva

José Marcos Bressane

Equipe Técnica

José Marcos Bressane (coordenação) Marcelo Willian Henriques Szrajbman Carolina Moreira Borges Fabiano Schmidt **Igor Chaves** Leandro Moda Luiz Felipe Froede Lorentz Priscilla de Castro Guarini Tiago Campos Rizzotto

Análise Socioambiental


Kátia Gisele Matosinho (coordenação) Alfredo Lima Silva André Cassino Ferreira

Nº EPE-DEE-RE-065/2016-rev0

Data: 18 de novembro de 2016

IDENTIFICAÇÃO DO DOCUMENTO E REVISÕES

Sub-area de estudo

Estudo para Escoamento do Potencial Eólico e Fotovoltaico da Região do Seridó

Produto (Nota Técnica ou Relatório)

EPE-DEE-RE-065/2016 RELATÓRIO

RevisõesDataDescrição sucintarev018.11.2016Emissão original

APRESENTAÇÃO

Este relatório apresenta de forma detalhada o estudo para dimensionamento dos reforços da rede de transmissão da região do Seridó, de forma a indicar a melhor alternativa de expansão da Rede Básica para possibilitar o pleno escoamento das usinas já contratadas na região e aumento das margens para conexão de novos empreendimentos de geração. A análise contempla os aspectos técnicos e econômicos, incorporando também, na Nota Técnica DEA 31/16 anexa ao relatório, a avaliação preliminar dos aspectos socioambientais associados aos reforços propostos.

SUMÁRIO

1	IN	ITRODUÇÃO	6
2	OE	BJETIVOS	9
3	CC	ONCLUSÕES	10
4	RE	ECOMENDAÇÕES	12
5		ADOS, PREMISSAS E CRITÉRIOS	
	5.1	Premissas e Critérios	15
		BASE DE DADOS	
		HORIZONTE DO ESTUDO	
	5.4	POTENCIAL ENERGÉTICO	16
		Alocação de Novas Subestações	
	5.6	CENÁRIOS DE INTERCÂMBIO E GERAÇÃO	19
6	DI	IAGNÓSTICO	20
7	DE	ESEMPENHO DAS ALTERNATIVAS	21
		ALTERNATIVA 1	
		ALTERNATIVA 2	
	-	ALTERNATIVA 4	
		ALTERNATIVA 5	
		ALTERNATIVA 6	
		ANÁLISE DE DESEMPENHO DAS ALTERNATIVAS	
8	ΑN	NÁLISE ECONÔMICA	40
	8.1	CUSTOS DE INVESTIMENTO	40
		CUSTOS DE PERDAS ELÉTRICAS	
	8.3	COMPARAÇÃO ECONÔMICA DAS ALTERNATIVAS	47
9	ΑN	NÁLISE DE SOBRETENSÕES À FREQUÊNCIA INDUSTRIAL 60 HZ	50
	9.1	ENERGIZAÇÃO DE LINHAS DE TRANSMISSÃO	50
	9.2	REJEIÇÃO DE CARGA	54
10	A C	NÁLISE DE CURTO CIRCUITO	57
11	. A 1	TENDIMENTO À CARGA	58
12	2 AN	NÁLISE SOCIOAMBIENTAL PRELIMINAR	66
13	RE	EFERÊNCIAS	67
14	I EÇ	QUIPE TÉCNICA	68
15	A N	NEXOS	69
	15.1 15.2	Correspondência — Energisa/PB — Expansão da Rede Básica	

MINISTÉRIO DE MINAS E ENERGIA

1.	5.3	CONSULTA À CHESF – SE CAMPINA GRANDE II	77
			77
1	5.4	CARACTERÍSTICAS ELÉTRICAS E PARÂMETROS DAS LINHAS DE TRANSMISSÃO	
16	FIC	CHA PET	82
17	TAE	BELAS DE COMPARAÇÃO R1 X R2	87
18	NO	OTA TÉCNICA DEA 31/16	89

ÍNDICE DE FIGURAS

rigura 1-1 – Potenciai cadastrado em Lelioes de Energia (2015)	ხ
Figura 1-2 – Potencial contratado em Leilões de Energia (2015)	7
Figura 1-3 – Região do Seridó	7
Figura 4-1 – Diagrama Esquemático da Alternativa Vencedora	12
Figura 4-2 – Diagrama Unifilar da SE Santa Luzia II	14
Figura 5-1 – Mapa do Potencial Energético da Região do Seridó e Localização da Nova SE Santa Luzia II	18
Figura 7-1 – Alternativa 1	21
Figura 7-2 – Alternativa 1, Nordeste Exportador, Condição Normal, ano 2021	22
Figura 7-3 – Alternativa 1, Nordeste Importador, Condição Normal, ano 2021	23
Figura 7-4 – Alternativa 2	24
Figura 7-5 – Alternativa 2, Nordeste Exportador, Condição Normal, ano 2021	25
Figura 7-6 – Alternativa 2, Nordeste Importador, Condição Normal, ano 2021	26
Figura 7-7 – Alternativa 3	
Figura 7-8 – Alternativa 3, Nordeste Exportador, Condição Normal, ano 2021	28
Figura 7-9 – Alternativa 3, Nordeste Importador, Condição Normal, ano 2021	29
Figura 7-10 – Alternativa 4	30
Figura 7-11 – Alternativa 4, Nordeste Exportador, Condição Normal, ano 2021	31
Figura 7-12 – Alternativa 4, Nordeste Importador, Condição Normal, ano 2021	32
Figura 7-13 – Alternativa 5	33
Figura 7-14 – Alternativa 5, Nordeste Exportador, Condição Normal, ano 2021	34
Figura 7-15 – Alternativa 5, Nordeste Importador, Condição Normal, ano 2021	35
Figura 7-16 – Alternativa 6	36
Figura 7-17 – Alternativa 6, Nordeste Exportador, Condição Normal, ano 2021	37
Figura 7-18 – Alternativa 6, Nordeste Importador, Condição Normal, ano 2021	38
Figura 8-1 – Gráfico de Comparação Econômica das Alternativas	48
Figura 9-1 – Energização da LT Campina Grande III – Santa Luzia II 500kV – Sequência 1	51
Figura 9-2 – Energização da LT Campina Grande III – Santa Luzia II 500kV – Sequência 2	52
Figura 9-3 – Energização da LT Santa Luzia II – Milagres II 500kV – Sequência 1	53
Figura 9-4 – Energização da LT Santa Luzia II – Milagres II 500kV – Sequência 2	53
Figura 9-5 – LT Santa Luzia II – Campina Grande III 500kV – Abertura do Terminal Campina Grande III	54
Figura 9-6 – LT Santa Luzia II – Campina Grande III 500kV – Abertura do Terminal Santa Luzia II	55
Figura 9-7 – LT Santa Luzia II – Milagres II 500kV – Abertura do Terminal Milagres II	55
Figura 9-8 – LT Santa Luzia II – Milagres II 500kV – Abertura do Terminal Santa Luzia II	56
Figura 11-1 – Regional Campina Grande II, carga pesada, ano 2030 (Parte 1)	62
Figura 11-2 – Regional Campina Grande II, carga pesada, ano 2030 (Parte 2)	63
Figura 11-3 – Regional Coremas, carga pesada, ano 2030	64

ÍNDICE DE TABELAS

Tabela 3-1– Comparação econômica das alternativas: Investimento + Perdas (R\$ x 1000)	11
Tabela 4-1 – Alternativa vencedora - Obras recomendadas em subestações	12
Tabela 4-2 – Alternativa vencedora - Obras recomendadas em linhas de transmissão	12
Tabela 5-1 – Níveis de tensão admissíveis	16
Tabela 5-2 – Potenciais Eólico e Fotovoltaico	17
Tabela 8-1 – Plano de obras e estimativa de custos da Alternativa 1 (R\$ x 1000)	40
Tabela 8-2 – Plano de obras e estimativa de custos da Alternativa 2 (R\$ x 1000)	41
Tabela 8-3 – Plano de obras e estimativa de custos da Alternativa 3 (R\$ x 1000)	42
Tabela 8-4 – Plano de obras e estimativa de custos da Alternativa 4 (R\$ x 1000)	43
Tabela 8-5 – Plano de obras e estimativa de custos da Alternativa 5 (R\$ x 1000)	44
Tabela 8-6 – Plano de obras e estimativa de custos da Alternativa 6 (R\$ x 1000)	45
Tabela 8-7 – Plano de obras e estimativa de custos comuns às alternativas (R\$ x 1000)	46
Tabela 8-8 – Custo do Diferencial de Perdas Elétricas (R\$ x 1000)	47
Tabela 8-9 – Comparação Econômica das Alternativas – Investimento + Perdas (R\$ x 1000)	48
Tabela 9-1 – Energização de Linhas de Transmissão	50
Tabela 9-2 – Rejeição de Carga	54
Tabela 10-1 – Correntes de curto circuito referentes ao ano 2021	57
Tabela 11-1 – Cargas conectadas à SE Campina Grande II 69 kV	58
Tabela 11-2 – Cargas conectadas à SE Coremas 69 kV	59
Tabela 11-3 – Carregamento máximo nos transformadores de fronteira 230-69 kV	61
Tabela 11-4 – Cargas conectadas à SE Currais Novos II	65
Tabela 15-1 – Características Elétricas das Linhas de Transmissão	81
Tabela 15-2 – Características Elétricas das Linhas de Transmissão	81

1 INTRODUÇÃO

O crescimento do aproveitamento dos potenciais de energia eólica e solar fotovoltaica, com significativa predominância na região do Nordeste brasileiro, torna necessário o adequado dimensionamento da Rede Básica dessa região a fim de escoar a energia das usinas já licitadas e provimento de folga ao sistema elétrico de transmissão para conexão de novos empreendimentos.

Nos Leilões de Energia realizados no ano de 2015, foram cadastrados na região Nordeste 705 empreendimentos eólicos e 513 empreendimentos fotovoltaicos. Estes empreendimentos somados correspondem à potência instalada de 31.475,7 MW. No mesmo ano, foram contratados 42 empreendimentos eólicos com potência instalada total de 1.177 MW e 44 empreendimentos fotovoltaicos com potência instalada total de 1.243 MW.

As Figuras 1-1 e 1-2 apresentam os montantes, em MW, envolvidos nos Leilões de Energia realizados no ano de 2015 separados por fonte e por estado da região Nordeste.

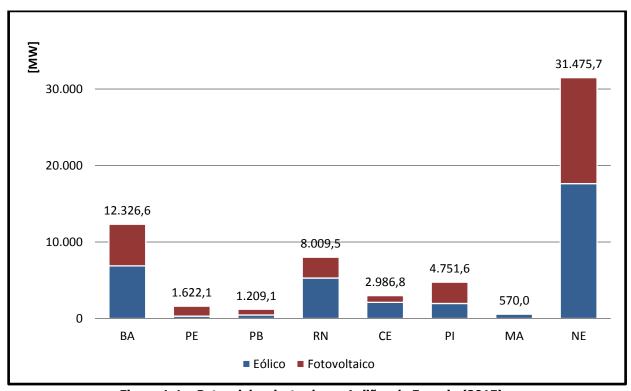


Figura 1-1 – Potencial cadastrado em Leilões de Energia (2015)

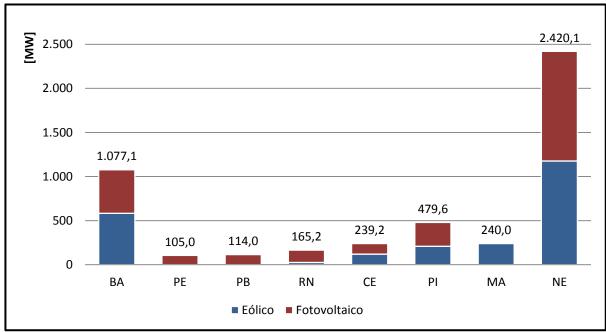


Figura 1-2 – Potencial contratado em Leilões de Energia (2015)

Seridó é uma região interestadual localizada no sertão nordestino que abrange 15 municípios do estado da Paraíba e 17 municípios do estado do Rio Grande do Norte. Sua população estimada é de pouco mais de 320.000 habitantes e os municípios mais populosos são Caicó/RN, Currais Novos/RN, Parelhas/RN, Picuí/PB, Juazeirinho/PB e Santa Luzia/PB. A figura 1-3 apresenta a localização da região do Seridó e suas microrregiões de acordo com o IBGE.

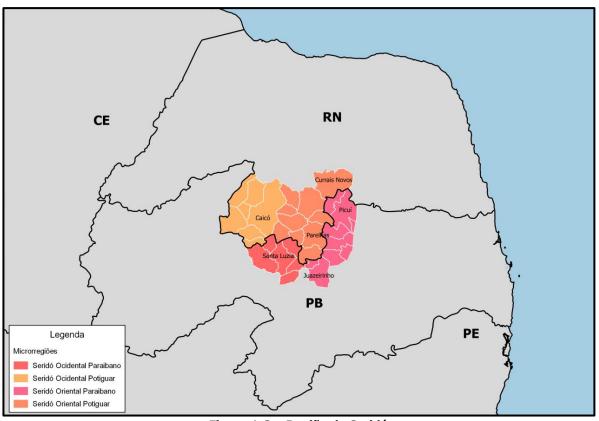


Figura 1-3 - Região do Seridó

Apesar do crescimento expressivo de potenciais cadastrados nos Leilões de Energia, o núcleo principal da região do Seridó se encontra a cerca de 100 km de três nós relevantes da Rede Básica, as subestações Coremas 230 kV, Campina Grande III 500/230 kV e Currais Novos II 230kV. Esta situação dificulta o acesso dos geradores, que perdem competitividade nos Leilões de Energia.

A ausência de uma rede de transmissão adequada para conexão desses empreendimentos levou os agentes geradores a solicitar conexão no sistema de distribuição em 69 kV da Energisa/PB situado mais próximo dos empreendimentos, esgotando a margem de escoamento do sistema de distribuição. Conforme Anexo 15.1, a Energisa/PB alega que seu sistema apresenta limitações e fragilidades para fins de acesso por parte de agentes geradores e esclarece que, para fazer frente às solicitações de acesso, necessitaria de investimentos significativos em seu sistema de alta tensão devido às distâncias para instalações da Rede Básica.

Esta situação evidencia a necessidade de realizar um estudo para o correto dimensionamento de uma solução estrutural de transmissão de energia, de forma a eliminar empecilhos para o pleno escoamento dos potenciais previstos na região.

2 OBJETIVOS

O objetivo deste estudo é indicar a melhor alternativa de expansão da Rede Básica da região do Seridó, visando o adequado escoamento dos futuros empreendimentos de geração eólica e fotovoltaica.

O estudo deve indicar, do ponto de vista técnico, econômico e ambiental, qual o melhor cronograma de obras a ser implantado no horizonte considerado, levando em conta as alternativas de expansão que garantam o escoamento do potencial energético frente ao grande crescimento deste tipo de fonte de geração na região Nordeste.

3 CONCLUSÕES

Foram estudadas seis alternativas de expansão da Rede Básica para escoamento do potencial eólico e fotovoltáico da região do Seridó. Todas as alternativas atendem aos critérios de planejamento e às premissas estabelecidas. O detalhamento das alternativas está apresentado no Capítulo 7.

A Alternativa 1 propõe a implantação de duas linhas de transmissão, em 500 kV, circuito duplo, interligando a nova SE Santa Luzia II à SE Campina Grande III.

A Alternativa 2 propõe a implantação de um eixo em 500 kV interligando as subestações Milagres II, Santa Luzia II e Campina Grande III.

A Alternativa 3 propõe a implantação de um eixo em 500 kV interligando as subestações Milagres II, Santa Luzia II e Açu III.

A Alternativa 4 propõe a implantação de um eixo em 500 kV interligando as subestações Campina Grande III, Santa Luzia II e Açu III.

A Alternativa 5 propõe a implantação de um eixo em 500 kV interligando as subestações Açu III, Santa Luzia II e Garanhuns II.

A Alternativa 6 propõe a implantação de um eixo em 500 kV interligando as subestações Campina Grande III, Santa Luzia II e Garanhuns II.

Por fim, destaca-se que também foi avaliada em todas as alternativas a implantação de uma LT 230 kV Santa Luzia II – Coremas. Entretanto, essa hipótese foi descartada devido a problemas de sobrecarga que surgem nessa LT e na LT 230 kV Milagres - Coremas durante contingências no sistema 500 kV, não apresentando benefícios para a rede neste momento.

As análises consideraram o valor presente dos custos das alternativas, referidos a 2021 (ano inicial do estudo), e utilizaram o método dos rendimentos necessários com truncamento das séries temporais em 2030, ano horizonte do estudo. O custo de cada alternativa, por sua vez, foi calculado tomando-se por base os investimentos de cada alternativa e as perdas diferenciais em relação àquela que apresentou menores perdas.

A Tabela 3-1 apresenta o resumo da comparação econômica das alternativas analisadas. O detalhamento da análise econômica é apresentado no Capítulo 8.

Tabela 3-1 - Comparação econômica das alternativas: Investimento + Perdas (R\$ x 1000)

Comparação Econômica (R\$ x 1000)						
Alternativas	Investimento	Δ Perdas	Total	(%)	Ordem	
Alternativa 1	196.938,96	95.310,92	292.249,88	100,0%	1 º	
Alternativa 2	296.760,19	0,00	296.760,19	101,5%	2º	
Alternativa 3	334.033,22	4.877,04	338.910,26	116,0%	4º	
Alternativa 4	242.059,09	74.135,69	316.194,79	108,2%	3º	
Alternativa 3	343.794,99	25.569,33	369.364,32	126,4%	6º	
Alternativa 4	306.521,95	54.106,41	360.628,37	123,4%	5º	

A análise de mínimo custo global resultou no empate entre as Alternativas 1 e 2, dentro da margem de 5% de diferença.

A Alternativa 1 possui menor investimento inicial, no entanto sua topologia caracteriza um sistema elétrico com objetivo exclusivo de atendimento à geração da região do Seridó e não trás nenhum outro benefício às regiões adjacentes.

Empatada economicamente com a Alternativa 1, a Alternativa 2 possui vantagens para o sistema elétrico da região, que fazem dela a melhor opção do ponto de vista técnico. A Alternativa 2 funciona como um eixo que conecta as regiões metropolitanas e produtoras de energia da Área Leste da Região Nordeste às interligações elétricas dos subsistemas N-NE-SE, proporcionando as menores perdas elétricas dentre as alternativas estudadas e criando uma nova rota que contribui para aumentar a confiabilidade do sistema elétrico, principalmente por ocasião de contingências múltiplas no sistema. Em cenários de elevada geração das usinas eólicas do RN, por exemplo, e contingência dupla das linhas de transmissão João Câmara III – Açu III C1 e C2, a Alternativa 2 possui desempenho superior à Alternativa 1 em relação aos níveis de tensão encontrados nas barras 500 kV das subestações Recife II e Pau Ferro, o que proporcionaria menor corte de carga e geração na região. Desta forma, **a Alternativa 2 foi a escolhida como vencedora**.

4 RECOMENDAÇÕES

Sob o ponto de vista técnico e econômico, recomenda-se a implantação da Alternativa 2, com o cronograma de obras de acordo com a Tabela 4-1, Tabela 4-2 e Figura 4-1.

Tabela 4-1 – Alternativa vencedora - Obras recomendadas em subestações

Ano	Subestação	Tensão	Descrição
		500 kV	Novo pátio de subestação 500 kV
2021	Santa Luzia II		Reator de Barra Manobrável (6+1) x 33,3 MVAr
			Reator de Linha Fixo (3+1) x 33,3 MVAr – ref. LT Milagres II – Santa Luzia II
2021	Campina Grande III	500 kV	Reator de Linha Fixo (3+1) x 33,3 MVAr – ref. LT Santa Luzia II – C. Grande III
2021	2024 A415 II		Reator de Barra Manobrável 3 x 33,3 MVAr
2021	Milagres II	500 kV	Reator de Linha Fixo (3+1) x 33,3 MVAr – ref. LT Milagres II – Santa Luzia II
2021	Campina Grande II	230-69 kV	4º Transformador trifásico 230-69 kV, 100 MVA

Tabela 4-2 - Alternativa vencedora - Obras recomendadas em linhas de transmissão

Ano	Linha de Transmissão	Tensão	Configuração	Extensão
2021	Santa Luzia II - Campina Grande III	500 kV	4xCAA 954 MCM CS	126 km
2021	Santa Luzia II - Milagres II	500 kV	4xCAA 954 MCM CS	238 km

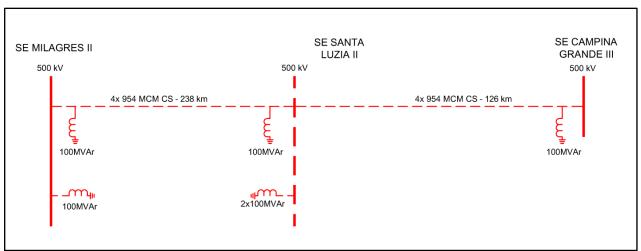


Figura 4-1 – Diagrama Esquemático da Alternativa Vencedora

Os equipamentos e linhas de transmissão recomendados neste relatório devem apresentar parâmetros e capacidades apresentados no Anexo 15.4.

De acordo com o Capítulo 11, a avaliação da necessidade de um novo ponto de suprimento em 69 kV não encontrou problemas de sobrecarga nos transformadores de fronteira das subestações Campina Grande II e Coremas. Dessa forma, não foi vislumbrada necessidade de conexão de cargas da Energisa/PB na nova SE Santa Luzia II até o ano 2030. Entretanto, recomenda-se que a

SE Santa Luzia II seja implantada de modo a comportar futuramente novos setores 230 kV e 69 kV.

Conforme consulta realizada à concessionária CHESF e apresentada no Anexo 15.3, recomenda-se que o relatório R4 apresente o detalhamento das intervenções necessárias na SE Campina Grande II para eliminação de possíveis limitações relacionadas à capacidade de condução dos barramentos de 230 kV e 69 kV.

Além das obras indicadas neste estudo, a nova subestação Santa Luzia II 500 kV deverá ser dimensionada para expansão de mais dez conexões em 500 kV de linha de transmissão ou de bancos de autotransformadores, visando atender a possíveis expansões futuras. A Figura 4-2 apresenta o diagrama unifilar da SE Santa Luzia II em sua configuração final.

Todas as conexões de reatores de linha fixos em 500 kV recomendadas neste estudo devem possibilitar adequação futura de disjuntores de manobra.

Recomenda-se que, na subestação Campina Grande III, as entradas de linhas de transmissão de 500 kV para as subestações Santa Luzia II e Pau Ferro sejam trocadas de posição para reduzir a quantidade de torres e evitar cruzamentos. Este estudo considerou ainda que a LT para a SE Santa Luzia II será implantada em data posterior a LT para a SE Pau Ferro, com qual compartilha o vão de 500 kV em arranjo disjuntor e meio. Desta forma, o disjuntor de interligação de barras 500 kV pertence ao conjunto de obras para implantação da LT 500 kV Pau Ferro — Campina Grande III. Caso contrário, a licitação da LT Santa Luzia II — Campina Grande III deverá prever um disjuntor adicional de interligação de barras 500 kV.

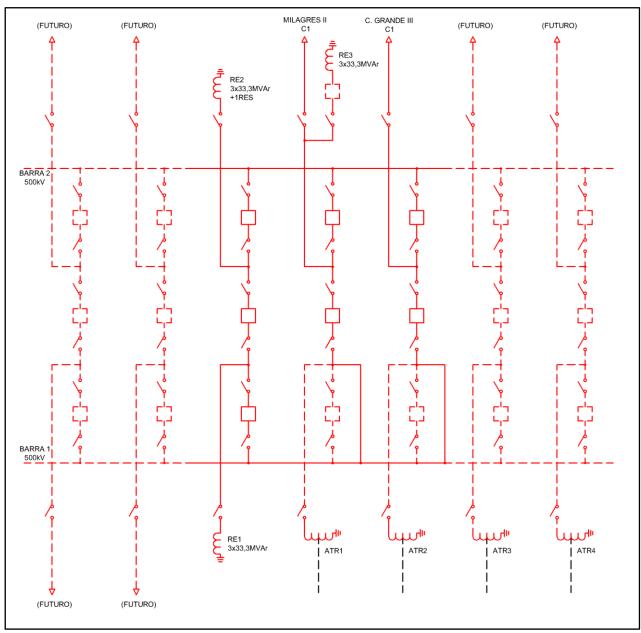


Figura 4-2 — Diagrama Unifilar da SE Santa Luzia II

5 DADOS, PREMISSAS E CRITÉRIOS

5.1 Premissas e Critérios

Foram seguidas as diretrizes para elaboração da documentação necessária para se recomendar à ANEEL uma nova instalação de transmissão integrante da Rede Básica através de ato licitatório, definidas no documento publicado pela EPE denominado "Diretrizes para Elaboração dos Relatórios Técnicos Referentes às Novas Instalações da Rede Básica", [1].

Os critérios e procedimentos utilizados no estudo estão de acordo com o documento "Critérios e Procedimentos para o Planejamento da Expansão dos Sistemas de Transmissão - CCPE/CTET - Janeiro/2001", [2], além das premissas apresentadas nos subitens a seguir, onde se destacam:

- Manter o conceito de mínimo custo global para a escolha da alternativa;
- Atender ao critério "N-1" para elementos da Rede Básica e Rede Básica de Fronteira;
- Fator de potência no barramento da Rede Básica de Fronteira: 0,95;
- Utilizar os limites de carregamento das linhas de transmissão e transformadores existentes nos Contratos de Prestação de Serviços de Transmissão (CPST). Para os novos equipamentos a serem instalados na rede, levar em consideração as recomendações contidas na Resolução no 191 da ANEEL para determinação das capacidades em contingência;
- Para cálculo de perdas elétricas, utilizou-se custo de 193,00 R\$/MWh, calculado com base no custo marginal de expansão da geração informado pela EPE;
- Para comparação dos custos entre as alternativas analisadas foi utilizado o documento: "Base de Referência de Preços ANEEL – Junho/2015", Ref. [3]; e o método dos rendimentos necessários, com o truncamento das séries temporais no ano 2030. Os investimentos previstos ao longo do tempo são referidos ao ano 2021 com taxa de retorno de 8% ao ano;
- Para a preparação das fichas contendo a estimativa dos investimentos em empreendimentos de transmissão (Rede Básica), que servirão de subsídio para o processo licitatório, foi considerada a base de custos consolidada no documento: "Base de Referência de Preços ANEEL – Junho/2015", Ref. [3];
- Os níveis de tensão admissíveis em regime permanente para cada classe de tensão envolvida são apresentados na Tabela 5-1.

Tabela 5-1 - Níveis de tensão admissíveis

Tensão Nominal	Condição Operativa Normal		Condição Operativa de Emergência	
de Operação	[kV]	[pu]	[kV]	[pu]
69 kV	66 a 72	0,95 a 1,05	62 a 72	0,90 a 1,05
230 kV	218 a 242	0,95 a 1,05	207 a 242	0,90 a 1,05
500 kV	500 a 550	1,00 a 1,10	475 a 550	0,95 a 1,10

Ressalta-se que, além das simulações de fluxo de carga, serão analisados os níveis de curto circuito da alternativa selecionada para a expansão do sistema, em sua configuração inicial.

5.2 Base de Dados

Utilizou-se como referência para as simulações de fluxo de potência a base de dados correspondente ao Plano Decenal 2024, com as atualizações pertinentes da topologia da rede, plano de geração e mercado.

5.3 Horizonte do Estudo

O ano inicial do estudo é 2021, tendo como o horizonte o ano 2030. Serão analisados, portanto, 10 anos. É importante ressaltar que o prazo mínimo para a implantação de qualquer obra de expansão da Rede Básica é de 3 anos, contados desde a incorporação no PET — Plano de Expansão da Transmissão, passando por todo o processo de licitação ou autorização, realizado pela ANEEL, até a instalação do empreendimento.

5.4 Potencial Energético

A partir da base de dados de empreendimentos cadastrados na EPE, somou-se um potencial eólico e fotovoltaico de 582,1 MW na região do Seridó dos estados da Paraíba e do Rio Grande do Norte, conforme mostra a Tabela 5-2. Não foram somados projetos que já venderam energia em leilões anteriores ao ano de 2016.

Tabela 5-2 – Potenciais Eólico e Fotovoltaico

MUNICÍPIO	UF	[MW]
AREIA DE BARAUNAS	PB	16,80
CAICO	RN	40,00
JUNCO DO SERIDO	PB	136,50
PATOS	PB	30,00
SANTA LUZIA	PB	198,60
SAO JOSE DO SABUGI	PB	25,20
SAO MAMEDE	PB	21,00
SERRA NEGRA DO NORTE	RN	30,00
TEIXEIRA	PB	84,00

Devido ao crescimento da quantidade de projetos previstos para os próximos anos, conforme evidenciado no Anexo 15.1, este estudo considerou 100% do potencial cadastrado entrando em operação no ano de 2021 para efeito de dimensionamento do sistema de transmissão.

5.5 Alocação de Novas Subestações

Com objetivo de coletar a geração das usinas previstas na região do Seridó, este estudo adotou como premissa a implantação de uma subestação em 500 kV.

Para minimizar as perdas elétricas e o custo de construção de linhas de transmissão para conexão dos acessantes geradores, a nova subestação foi alocada próxima do centro de geração das usinas, no município de Santa Luzia.

A Figura 5-1 apresenta o mapa do potencial energético considerado no estudo e ilustra a localização da nova subestação, denominada SE Santa Luzia II.

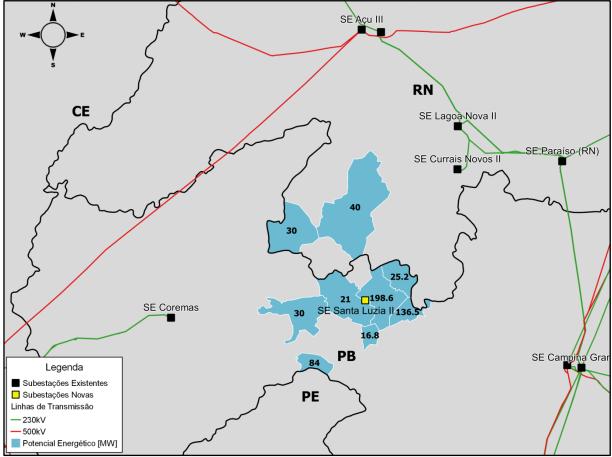


Figura 5-1 — Mapa do Potencial Energético da Região do Seridó e Localização da Nova SE Santa Luzia II

Foram definidas as seguintes coordenadas inicias para a SE Santa Luzia II: 06°54′02″S, 36°58′20″O. A localização poderá sofrer alteração devido à avaliação socioambiental.

O local da nova subestação Santa Luzia II levou em consideração alguns aspectos, a citar:

- Facilidade de acesso à rodovia BR-230;
- Local situado na área rural do município de Santa Luzia, facilitando a conexão das diversas linhas de transmissão dos acessantes geradores; e
- Proximidade com a rede de 69 kV da Energisa/PB, que proporciona menores custos de adequação do sistema elétrico proposto para se tornar um novo ponto de suprimento futuro.

5.6 Cenários de Intercâmbio e Geração

Foram simulados dois cenários de intercâmbio entre as regiões Norte, Nordeste e Sudeste, com objetivo de analisar as situações mais críticas. As características de cada cenário estão apresentadas a seguir.

Cenário de Intercâmbio Nordeste Máximo Exportador

- Patamar de carga leve;
- Exportação máxima da Região Nordeste em torno de 12.000 MW;
- Geração eólica na Região Nordeste em 80% da capacidade instalada;
- Usinas térmicas da Região Nordeste despachando entre 4550 e 5150 MW;
- Usinas eólicas e fotovoltaicas da região do Seridó produzindo 80% da capacidade instalada; e
- Demais condições operativas conforme Plano Decenal de Expansão de Energia PDE 2024 Leve Norte Seco, disponibilizado em 26/01/2016 no portal da EPE.

Cenário de Intercâmbio Nordeste Máximo Importador

- Patamar de carga pesada;
- Importação máxima da Região Nordeste em torno de 5.000 MW;
- Geração mínima das usinas hidrelétricas do rio São Francisco;
- Geração eólica na Região Nordeste em 40% da capacidade instalada;
- Usinas térmicas inflexíveis da Região Nordeste produzindo 425 MW;
- Usinas hidrelétricas de Belo Monte e Tucuruí despachando 80% da capacidade instalada;
- Usinas eólicas e fotovoltaicas da região do Seridó produzindo 50% da capacidade instalada; e
- Demais condições operativas conforme Plano Decenal de Expansão de Energia PDE 2024 Pesada Norte Seco, disponibilizado em 26/01/2016 no portal da EPE.

6 DIAGNÓSTICO

O sistema elétrico da região do Seridó é composto por redes de distribuição que atendem à carga de consumidores locais. Essa rede é inadequada para escoar o potencial energético de 582,1 MW, de acordo com dados cadastrados na EPE.

As subestações de Rede Básica mais próximas dos centros de geração são a SE Coremas 230 kV, a SE Campina Grande III 500/230 kV e a SE Currais Novos II 230kV. De uma forma geral, as subestações de Rede Básica estão muito distantes dos pontos onde estão localizados os potenciais energéticos, demandando linhas de conexão extensas, o que muitas vezes inviabiliza os projetos.

Dessa forma, torna-se evidente a necessidade de se alocar novas subestações de Rede Básica próximas aos grandes centros de geração, e interligá-las ao SIN através de linhas de transmissão robustas o bastante para possibilitar o pleno escoamento desses potenciais.

7 DESEMPENHO DAS ALTERNATIVAS

O desempenho das alternativas foi avaliado considerando os cenários extremos Nordeste Máximo Exportador e Nordeste Máximo Importador.

O cenário dimensionador para as obras a serem recomendadas é o Nordeste Máximo Exportador, no patamar de carga leve, uma vez que é neste cenário que as linhas de transmissão encontramse mais carregadas.

Nesta avaliação foram realizadas simulações de fluxo de potência em regime normal de operação e efetuadas contingências simples dos elementos da Rede Básica e Rede Básica de Fronteira.

7.1 Alternativa 1

A Alternativa 1 contempla a implantação de uma linha de transmissão, em 500 kV, circuito duplo, com 126 km de extensão, interligando a nova SE Santa Luzia II à SE Campina Grande III, conforme apresenta a Figura 7-1.

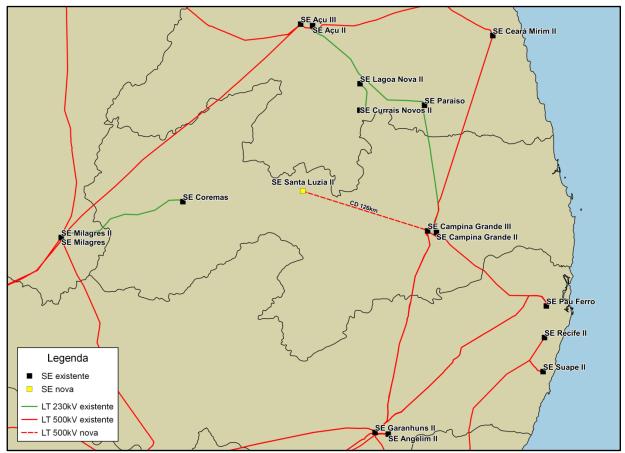


Figura 7-1 - Alternativa 1

A Figura 7-2 e a Figura 7-3 apresentam os fluxos de potência e perfis de tensão no sistema de transmissão, em regime normal de operação, com a inserção das obras referentes à Alternativa 1 nos cenários Nordeste Máximo Exportador e Nordeste Máximo Importador, respectivamente.

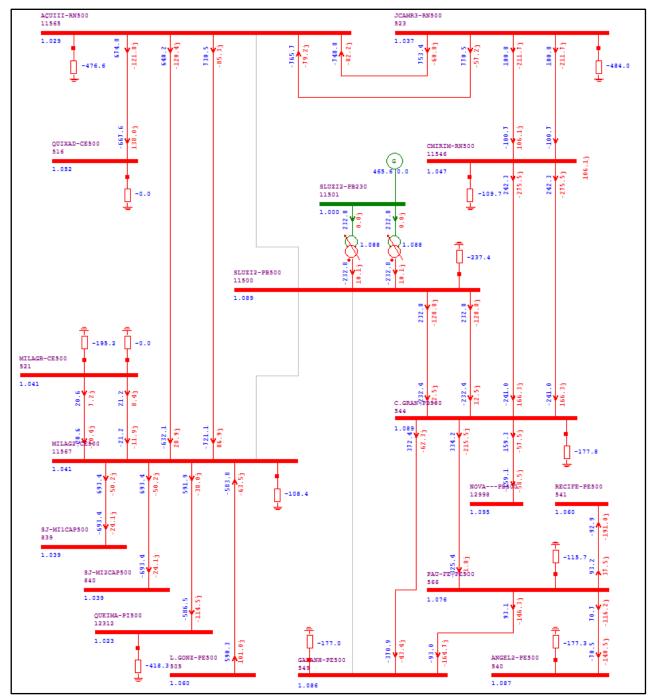


Figura 7-2 – Alternativa 1, Nordeste Exportador, Condição Normal, ano 2021

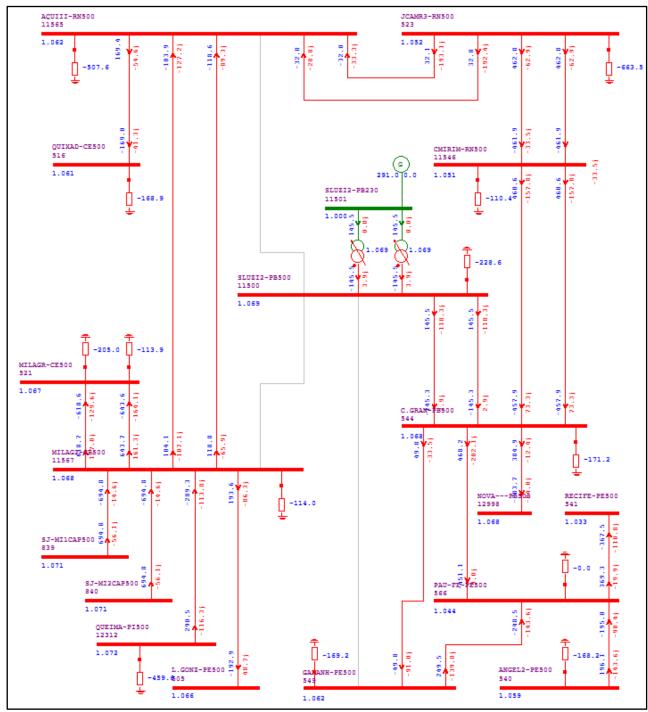


Figura 7-3 – Alternativa 1, Nordeste Importador, Condição Normal, ano 2021

7.2 Alternativa 2

A Alternativa 2 contempla a implantação de um eixo em 500 kV interligando as subestações Milagres II, Santa Luzia II e Campina Grande III, conforme apresenta a Figura 7-4.

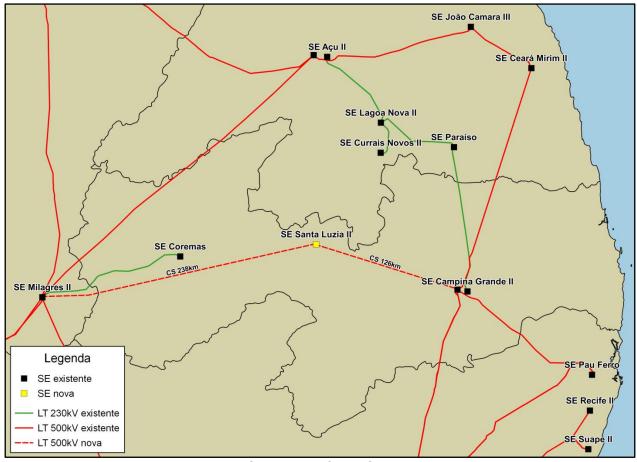


Figura 7-4 - Alternativa 2

A Figura 7-5 e a Figura 7-6 apresentam os fluxos de potência e perfis de tensão no sistema de transmissão, em regime normal de operação, com a inserção das obras referentes à Alternativa 2 nos cenários Nordeste Máximo Exportador e Nordeste Máximo Importador, respectivamente.

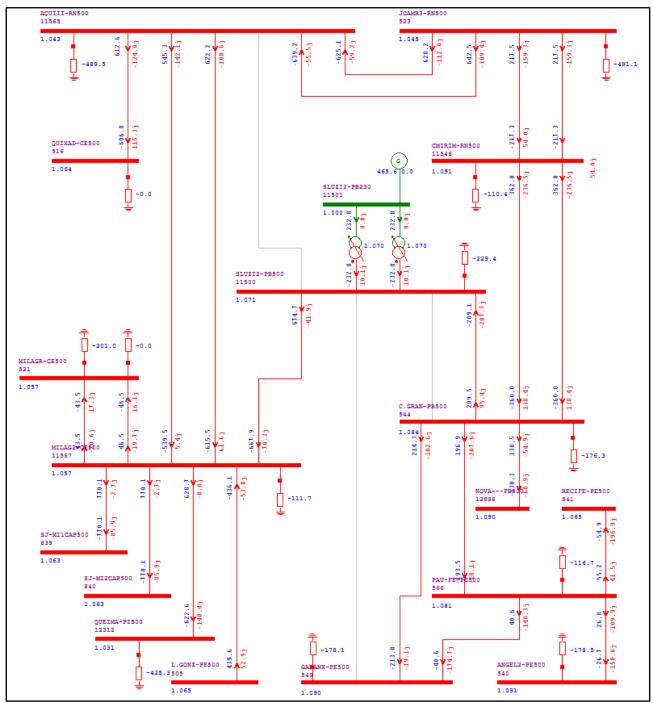


Figura 7-5 – Alternativa 2, Nordeste Exportador, Condição Normal, ano 2021

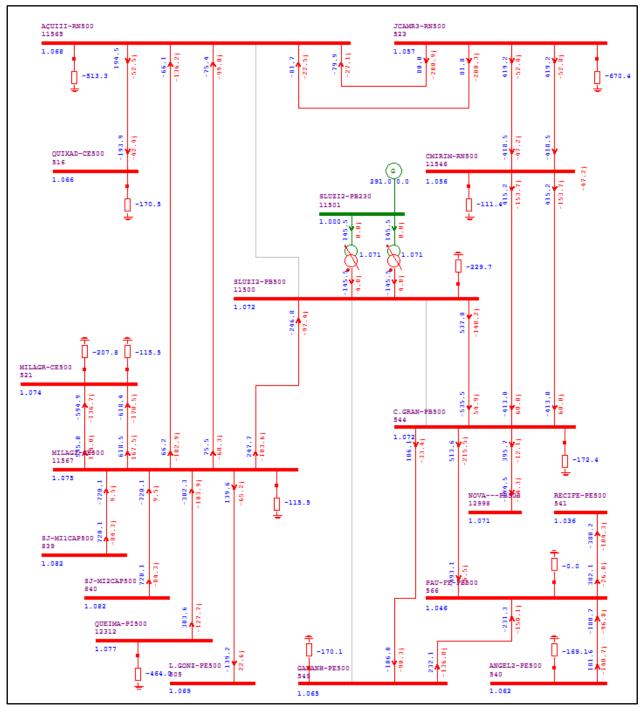


Figura 7-6 – Alternativa 2, Nordeste Importador, Condição Normal, ano 2021

7.3 Alternativa 3

A Alternativa 3 contempla a implantação de um eixo em 500 kV interligando as subestações Milagres II, Santa Luzia II e Açu III, conforme apresenta a Figura 7-7.

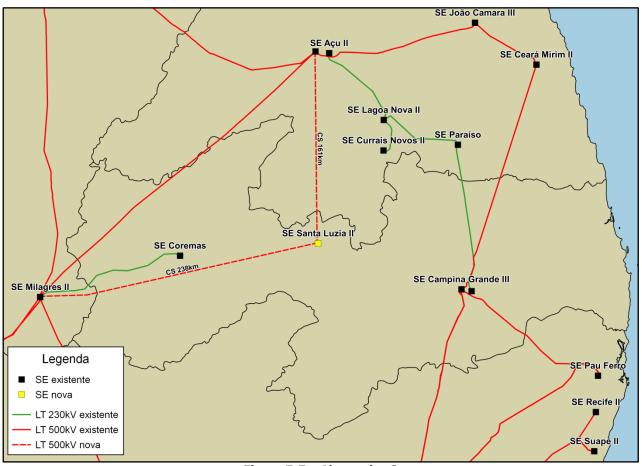


Figura 7-7 — Alternativa 3

A Figura 7-8 e a Figura 7-9 apresentam os fluxos de potência e perfis de tensão no sistema de transmissão, em regime normal de operação, com a inserção das obras referentes à Alternativa 3 nos cenários Nordeste Máximo Exportador e Nordeste Máximo Importador, respectivamente.

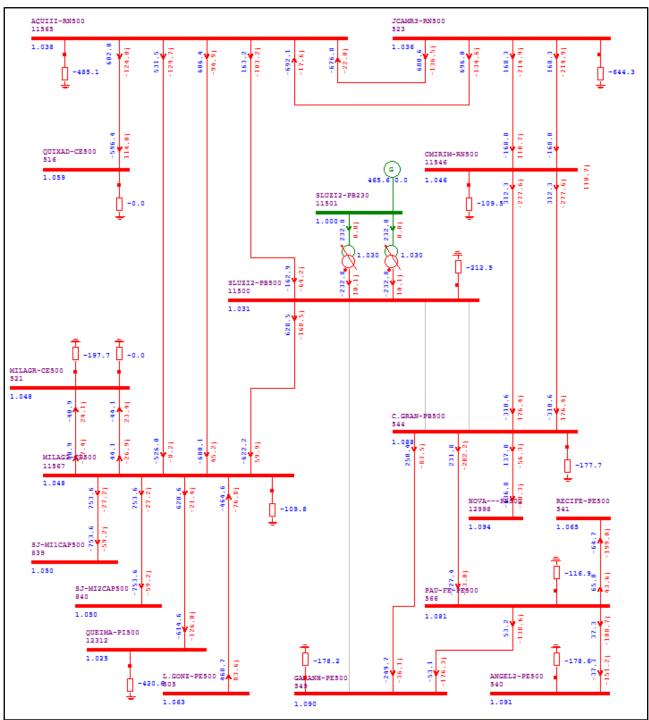


Figura 7-8 – Alternativa 3, Nordeste Exportador, Condição Normal, ano 2021

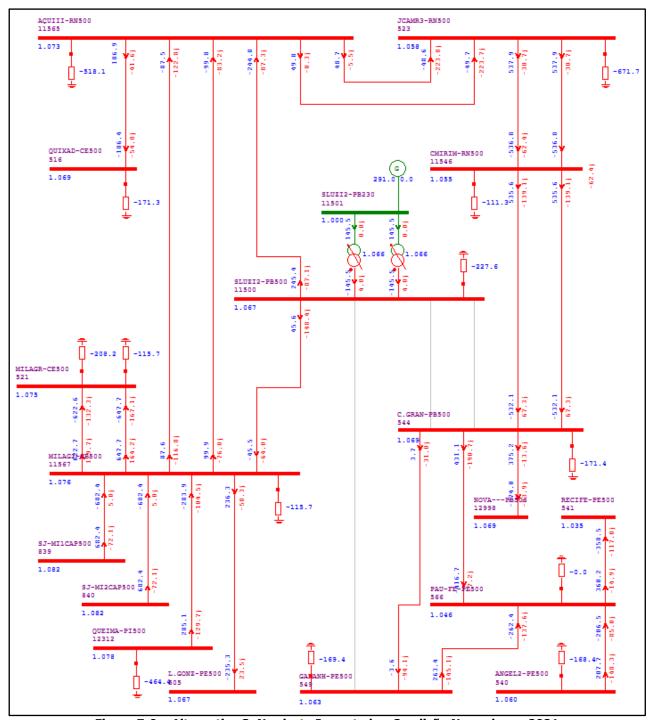


Figura 7-9 – Alternativa 3, Nordeste Importador, Condição Normal, ano 2021

7.4 Alternativa 4

A Alternativa 4 contempla a implantação de um eixo em 500 kV interligando as subestações Campina Grande III, Santa Luzia II e Açu III, conforme apresenta a Figura 7-10.

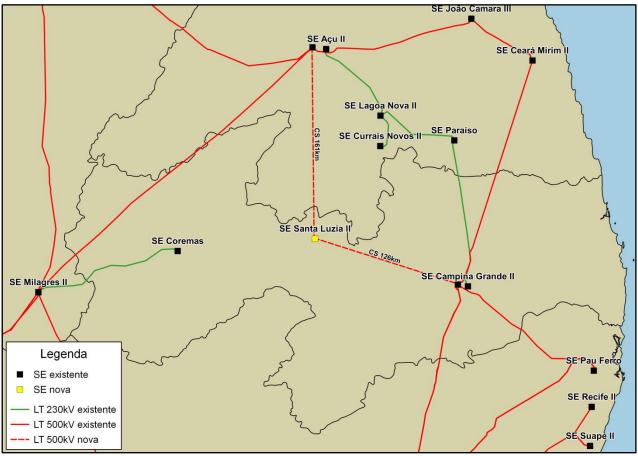


Figura 7-10 - Alternativa 4

A Figura 7-11 e a Figura 7-12 apresentam os fluxos de potência e perfis de tensão no sistema de transmissão, em regime normal de operação, com a inserção das obras referentes à Alternativa 4 nos cenários Nordeste Máximo Exportador e Nordeste Máximo Importador, respectivamente.

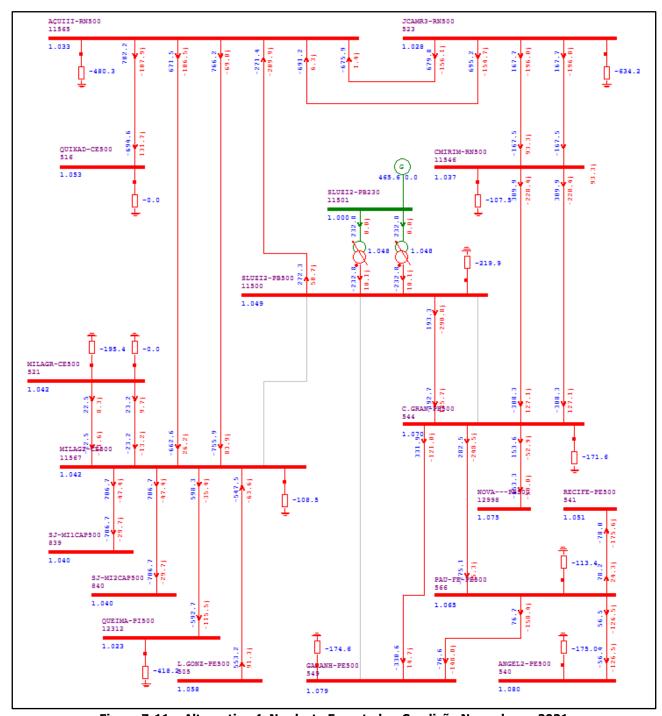


Figura 7-11 – Alternativa 4, Nordeste Exportador, Condição Normal, ano 2021

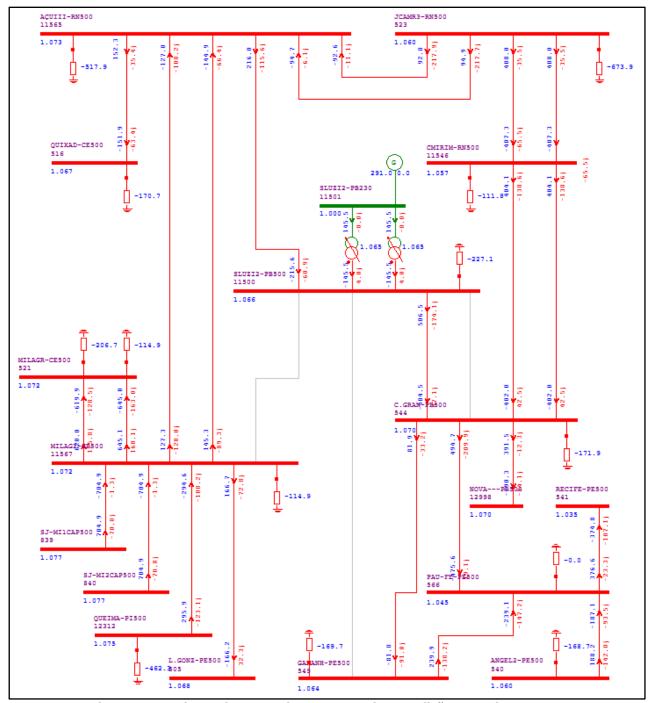
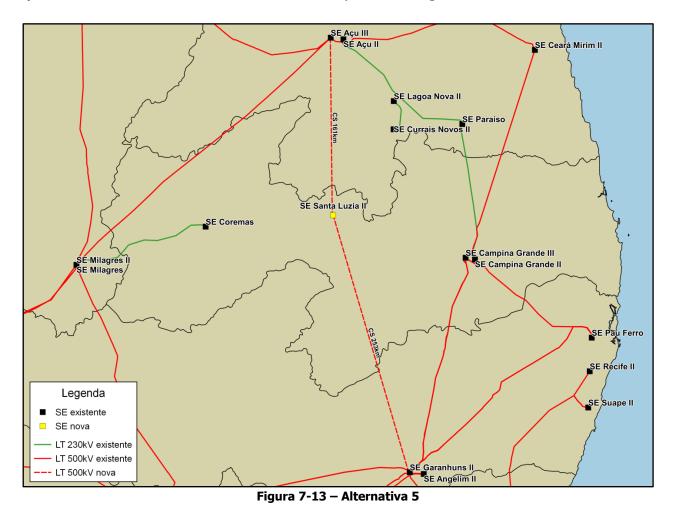



Figura 7-12 – Alternativa 4, Nordeste Importador, Condição Normal, ano 2021

7.5 Alternativa 5

A Alternativa 5 contempla a implantação de um eixo em 500 kV interligando as subestações Açu III, Santa Luzia II e Garanhuns II, conforme apresenta a Figura 7-13.

A Figura 7-14 e a Figura 7-15 apresentam os fluxos de potência e perfis de tensão no sistema de transmissão, em regime normal de operação, com a inserção das obras referentes à Alternativa 5 nos cenários Nordeste Máximo Exportador e Nordeste Máximo Importador, respectivamente.

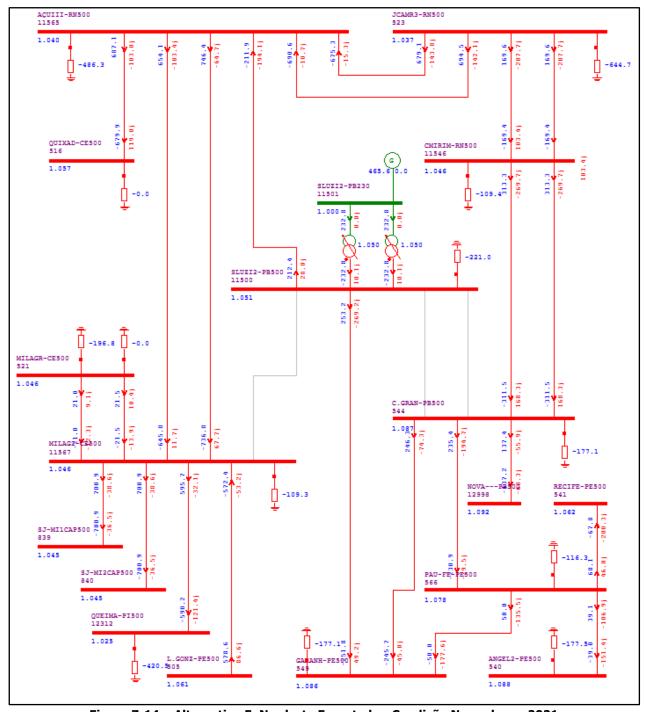


Figura 7-14 – Alternativa 5, Nordeste Exportador, Condição Normal, ano 2021

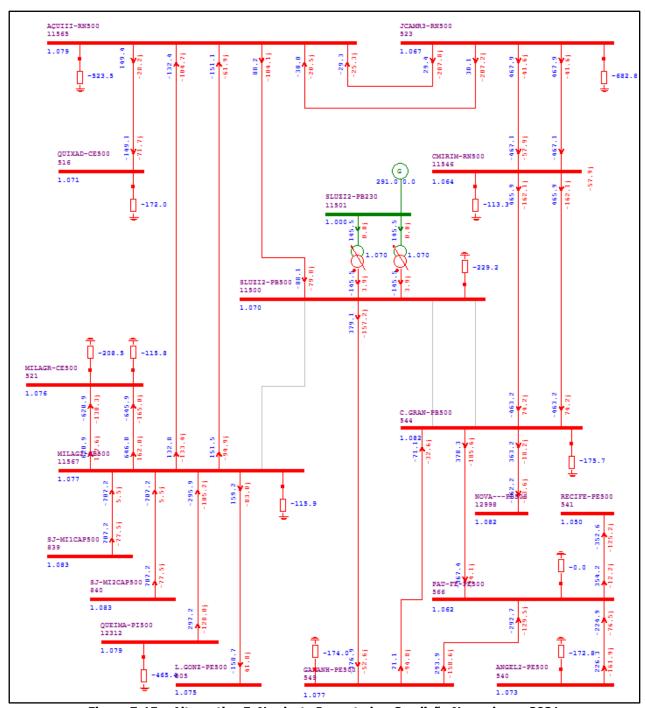


Figura 7-15 – Alternativa 5, Nordeste Importador, Condição Normal, ano 2021

7.6 Alternativa 6

A Alternativa 6 contempla a implantação de um eixo em 500 kV interligando as subestações Campina Grande III, Santa Luzia II e Garanhuns II, conforme apresenta a Figura 7-16.

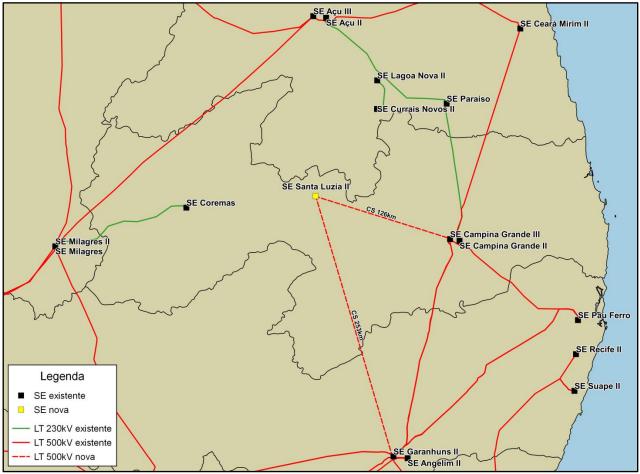


Figura 7-16 - Alternativa 6

A Figura 7-17 e a Figura 7-18 apresentam os fluxos de potência e perfis de tensão no sistema de transmissão, em regime normal de operação, com a inserção das obras referentes à Alternativa 6 nos cenários Nordeste Máximo Exportador e Nordeste Máximo Importador, respectivamente.

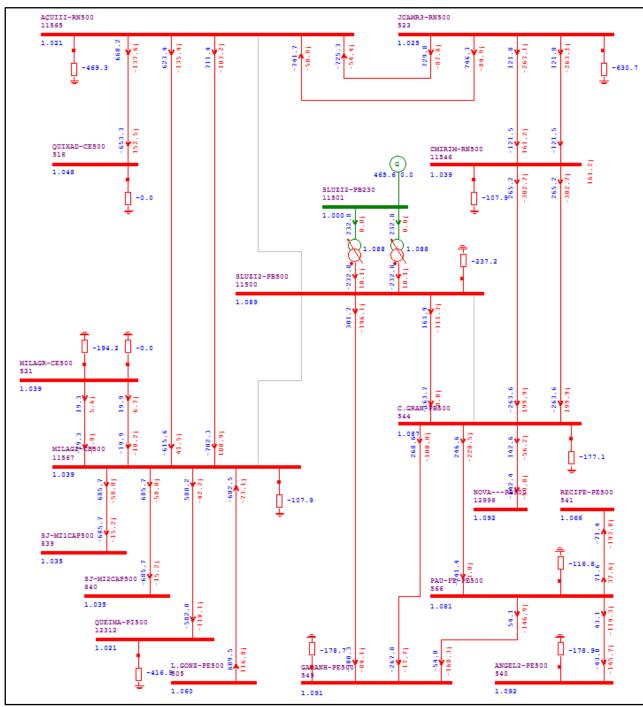


Figura 7-17 – Alternativa 6, Nordeste Exportador, Condição Normal, ano 2021

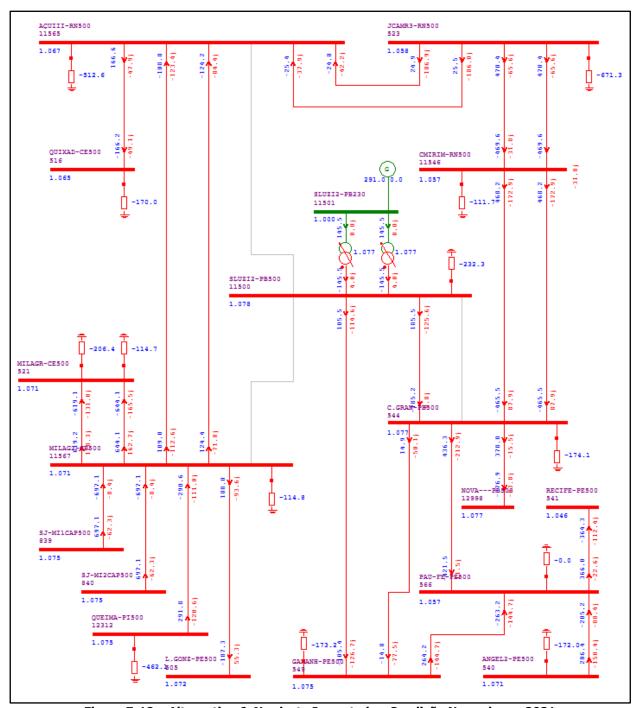


Figura 7-18 – Alternativa 6, Nordeste Importador, Condição Normal, ano 2021

7.7 Análise de Desempenho das Alternativas

Foram realizadas simulações de contingências simples dos elementos da Rede Básica para as seis alternativas e não foram encontrados níveis de tensão ou carregamento fora dos limites estabelecidos, considerando os cenários descritos no Capítulo 5.6.

O potencial energético alocado na SE Santa Luzia II foi de 582,1 MW. O despacho simultâneo das usinas do caso dimensionador, Nordeste Máximo Esportador, é de 80% ou cerca de 465,6 MW, correspondendo ao fator máximo de capacidade das usinas eólicas verificado em situações reais, entretanto não há limitações em nenhuma alternativa para o despacho de 100% da capacidade das usinas.

8 ANÁLISE ECONÔMICA

8.1 Custos de Investimento

Os custos utilizados na análise econômica comparativa das alternativas são os que constam na "Base de Referência de Preços Aneel – Junho/2015" Ref.[3].

Os investimentos previstos ao longo do tempo são referidos ao ano 2021 com taxa de retorno de 8% ao ano. Ressalta-se que esses valores são utilizados apenas para comparação de alternativas, não servindo como base para orçamentos.

Para comparação dos custos entre as alternativas analisadas é utilizado o método dos rendimentos necessários com o truncamento das séries temporais no ano horizonte de 2030.

O detalhamento do plano de obras e investimentos de cada alternativa é apresentado nas Tabelas 8-1 a 8-6.

Tabela 8-1 – Plano de obras e estimativa de custos da Alternativa 1 (R\$ x 1000)

				Custo da	Alternativa (R	x 1000)	
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN
				330.412,70	330.412,70	29.349,71	196.938,96
LT 500 kV SANTA LUZIA II - CAMPINA GRANDE III, C1 e C2 (CS) (Nova)				310.201,55	310.201,55	27.554,41	184.892,32
Circuito Duplo 500 kV, 4 x 954 MCM (RAIL), 126 km	2021	126,0	1725,72	217.440,93	217.440,93	19.314,72	129.603,34
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	2,0	9330,25	18.660,50	18.660,50	1.657,56	11.122,39
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	2,0	8610,40	17.220,80	17.220,80	1.529,68	10.264,27
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	3582,97	3.582,97	3.582,97	318,27	2.135,59
Reator de Linha Fixo 500 kV, (6+1R) x 33,3 Mvar 1Φ // SE CAMPINA GRANDE III	2021	7,0	4407,00	30.849,00	30.849,00	2.740,24	18.387,22
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	2,0	9330,25	18.660,50	18.660,50	1.657,56	11.122,39
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	2,0	1893,43	3.786,85	3.786,85	336,38	2.257,11
SE 500 kV CAMPINA GRANDE III (Ampliação/Adequação)				20.211,15	20.211,15	1.795,30	12.046,64
EL (Entrada de Linha) 500 kV, Arranjo DJM		2,0					
CRL (Conex. de Reator de Linha) 500 kV, Arranjo DJM		2,0					
IB (Interligação de Barras) 500 kV, Arranjo DJM	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG (Terreno Rural)	2021	1,0	9809,27	9.809,27	9.809,27	871,33	5.846,71

Tabela 8-2 – Plano de obras e estimativa de custos da Alternativa 2 (R\$ x 1000)

				Custo da	Alternativa (R	\$ x 1000)	
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN
				497.886,94	497.886,94	44.226,02	296.760,19
LT 500 kV SANTA LUZIA II - CAMPINA GRANDE III, C1 (Nova)				171.789,05	171.789,05	15.259,58	102.393,03
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 126 km	2021	126,0	963,38	121.385,39	121.385,39	10.782,35	72.350,46
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE CAMPINA GRANDE III	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
MIG-A // SE CAMPINA GRANDE III	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
LT 500 kV SANTA LUZIA II - MILAGRES II, C1 (Nova)				305.203,48	305.203,48	27.110,44	181.913,27
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 238 km	2021	238,0	963,38	229.283,51	229.283,51	20.366,67	136.661,98
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE MILAGRES II	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE MILAGRES II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE MILAGRES II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE MILAGRES II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE MILAGRES II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE MILAGRES II	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV MILAGRES II (Ampliação/Adequação)				20.894,40	20.894,40	1.856,00	12.453,89
2° Reator de Barra 500 kV, 3 x 33,3 Mvar 1Φ	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65

Tabela 8-3 – Plano de obras e estimativa de custos da Alternativa 3 (R\$ x 1000)

				Custo da	Alternativa (R	\$ x 1000)	
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN
				560.421,47	560.421,47	49.780,80	334.033,22
LT 500 kV SANTA LUZIA II - MILAGRES II, C1 (Nova)				305.203,48	305.203,48	27.110,44	181.913,27
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 238 km	2021	238,0	963,38	229.283,51	229.283,51	20.366,67	136.661,98
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE MILAGRES II	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE MILAGRES II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE MILAGRES II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE MILAGRES II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE MILAGRES II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE MILAGRES II	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV MILAGRES II (Ampliação/Adequação)				20.894,40	20.894,40	1.856,00	12.453,89
2° Reator de Barra 500 kV, 3 x 33,3 Mvar 1Ф	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65
LT 500 kV SANTA LUZIA II - AÇU III, C1 (Nova)				211.502,10	211.502,10	18.787,19	126.063,56
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 161 km	2021	161,0	963,38	155.103,55	155.103,55	13.777,45	92.447,81
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE AÇU III	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE AÇU	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE AÇU III	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE AÇU III	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV AÇU III (Ampliação/Adequação)				22.821,48	22.821,48	2.027,17	13.602,50
5° Reator de Barra 500 kV, 3 x 50 Mvar 1Φ	2021	3,0	5049,36	15.148,08	15.148,08	1.345,57	9.028,85
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65

Tabela 8-4 – Plano de obras e estimativa de custos da Alternativa 4 (R\$ x 1000)

				Custo da	Alternativa (R	\$ x 1000)	
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN
				406.112,64	406.112,64	36.073,94	242.059,09
LT 500 kV SANTA LUZIA II - AÇU III, C1 (Nova)				211.502,10	211.502,10	18.787,19	126.063,56
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 161 km	2021	161,0	963,38	155.103,55	155.103,55	13.777,45	92.447,81
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE AÇU III	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE AÇU	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE AÇU III	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE AÇU III	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV AÇU III (Ampliação/Adequação)				22.821,48	22.821,48	2.027,17	13.602,50
5° Reator de Barra 500 kV, 3 x 50 Mvar 1Φ	2021	3,0	5049,36	15.148,08	15.148,08	1.345,57	9.028,85
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65
LT 500 kV SANTA LUZIA II - CAMPINA GRANDE III, C1 (Nova)				171.789,05	171.789,05	15.259,58	102.393,03
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 126 km	2021	126,0	963,38	121.385,39	121.385,39	10.782,35	72.350,46
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE CAMPINA GRANDE III	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
MIG-A // SE CAMPINA GRANDE III	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71

Tabela 8-5 – Plano de obras e estimativa de custos da Alternativa 5 (R\$ x 1000)

				Custo da	Alternativa (R	\$ x 1000)	
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN
				576.799,19	576.799,19	51.235,59	343.794,99
LT 500 kV SANTA LUZIA II - AÇU III, C1 (Nova)				211.502,10	211.502,10	18.787,19	126.063,56
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 161 km	2021	161,0	963,38	155.103,55	155.103,55	13.777,45	92.447,81
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE AÇU III	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE AÇU	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE AÇU III	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE AÇU III	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV AÇU III (Ampliação/Adequação)				22.821,48	22.821,48	2.027,17	13.602,50
5° Reator de Barra 500 kV, 3 x 50 Mvar 1Φ	2021	3,0	5049,36	15.148,08	15.148,08	1.345,57	9.028,85
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65
LT 500 kV SANTA LUZIA II - GARANHUNS II, C1 (Nova)				319.654,12	319.654,12	28.394,06	190.526,42
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 253 km	2021	253,0	963,38	243.734,15	243.734,15	21.650,28	145.275,13
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE GARANHUNS II	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE GARANHUNS II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE GARANHUNS II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE GARANHUNS II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE GARANHUNS II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE GARANHUNS II	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV GARANHUNS II (Ampliação/Adequação)				22.821,48	22.821,48	2.027,17	13.602,50
2° Reator de Barra 500 kV, 3 x 50 Mvar 1Φ	2021	3,0	5049,36	15.148,08	15.148,08	1.345,57	9.028,85
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65

Tabela 8-6 – Plano de obras e estimativa de custos da Alternativa 6 (R\$ x 1000)

				Custo da	Alternativa (R	\$ x 1000)	
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN
				514.264,66	514.264,66	45.680,81	306.521,95
LT 500 kV SANTA LUZIA II - GARANHUNS II, C1 (Nova)				319.654,12	319.654,12	28.394,06	190.526,42
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 253 km	2021	253,0	963,38	243.734,15	243.734,15	21.650,28	145.275,13
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE SANTA LUZIA II	2021	3,0	4407,00	13.221,00	13.221,00	1.174,39	7.880,24
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE GARANHUNS II	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE GARANHUNS II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE GARANHUNS II	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE GARANHUNS II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE GARANHUNS II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
MIG-A // SE GARANHUNS II	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71
SE 500 kV GARANHUNS II (Ampliação/Adequação)				22.821,48	22.821,48	2.027,17	13.602,50
2° Reator de Barra 500 kV, 3 x 50 Mvar 1Φ	2021	3,0	5049,36	15.148,08	15.148,08	1.345,57	9.028,85
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	1,0	7673,40	7.673,40	7.673,40	681,61	4.573,65
LT 500 kV SANTA LUZIA II - CAMPINA GRANDE III, C1 (Nova)				171.789,05	171.789,05	15.259,58	102.393,03
Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 126 km	2021	126,0	963,38	121.385,39	121.385,39	10.782,35	72.350,46
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE SANTA LUZIA II	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14
MIM - 500 kV // SE SANTA LUZIA II	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE CAMPINA GRANDE III	2021	4,0	4407,00	17.628,00	17.628,00	1.565,85	10.506,98
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	1,0	9330,25	9.330,25	9.330,25	828,78	5.561,20
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE CAMPINA GRANDE III	2021	1,0	1893,43	1.893,43	1.893,43	168,19	1.128,56
MIG-A // SE CAMPINA GRANDE III	2021	1,0	1819,86	1.819,86	1.819,86	161,65	1.084,71

A Tabela 8-7 apresenta o detalhamento do plano de obras e investimentos comuns a todas as alternativas. Cabe ressaltar que a comparação econômica das alternativas apresentada na Seção 8.3 utilizou apenas os custos associados às obras exclusivas de cada alternativa, portanto o custo das obras comuns não foi considerado.

Tabela 8-7 – Plano de obras e estimativa de custos comuns às alternativas (R\$ x 1000)

				Custo da	Alternativa (R	\$ x 1000)		
Descrição	Ano	Qtde	Custo Unitário	Custo Total	VP	Parcela Anual	RN	
				78.346,74	78.346,74	6.959,34	46.697,74	
SE 500 kV SANTA LUZIA II (Nova)				66.445,51	66.445,51	5.902,18	39.604,14	
1° e 2° Reator de Barra 500 kV, (6+1R) x 33,3 Mvar 1 Φ	2021	7,0	4407,00	30.849,00	30.849,00	2.740,24	18.387,22	
EL (Entrada de Linha) 500 kV, Arranjo DJM		2,0						
IB (Interligação de Barras) 500 kV, Arranjo DJM		2,0						
IB (Interligação de Barras) 500 kV, Arranjo DJM	2021	1,0	8610,40	8.610,40	8.610,40	764,84	5.132,14	
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	2021	2,0	7673,40	15.346,80	15.346,80	1.363,22	9.147,30	
MIM - 500 kV	2021	1,0	1791,48	1.791,48	1.791,48	159,13	1.067,79	
MIG (Terreno Rural)	2021	1,0	9847,82	9.847,82	9.847,82	874,76	5.869,69	
SE 230/69 kV CAMPINA GRANDE II (Ampliação)				11.901,23	11.901,23	1.057,16	7.093,60	
1° TF 230/69 kV, 1 x 100 MVA 3Ф	2021	1,0	7676,47	7.676,47	7.676,47	681,88	4.575,48	
CT (Conexão de Transformador) 230 kV, Arranjo BPT	2021	1,0	2961,24	2.961,24	2.961,24	263,04	1.765,02	
CT (Conexão de Transformador) 69 kV, Arranjo BPT	2021	1,0	1263,52	1.263,52	1.263,52	112,24	753,11	

8.2 Custos de Perdas Elétricas

Os custos referentes ao diferencial de perdas elétricas de cada alternativa foram estimados considerando as simulações dos dois cenários; fator de perdas de 0,5; custo de perdas de 193 R\$/MWh e taxa de retorno de 8% ao ano, referidos a 2021. Os valores das perdas elétricas obtidas nas simulações de fluxo de potência são apresentados na Tabela 8-8.

Tabela 8-8 - Custo do Diferencial de Perdas Elétricas (R\$ x 1000)

Anos		Alternativa 1			Alternativa 2			Alternativa 3	
	ΔPerdas (MW)	Custo (R\$x1000)	VP (R\$x1000)	ΔPerdas (MW)	Custo (R\$x1000)	VP (R\$x1000)	ΔPerdas (MW)	Custo (R\$x1000)	VP (R\$x1000)
2021	6,88	11.623,43	11.623,43	0,00	0,00	0,00	0,44	739,67	739,67
2022	6,74	11.390,96	10.547,18	0,00	0,00	0,00	0,30	507,20	469,63
2023	7,96	13.462,04	11.541,53	0,00	0,00	0,00	0,19	317,00	271,78
2024	8,16	13.800,18	10.955,02	0,00	0,00	0,00	0,45	760,81	603,95
2025	8,16	13.800,18	10.143,54	0,00	0,00	0,00	0,45	760,81	559,22
2026	8,16	13.800,18	9.392,17	0,00	0,00	0,00	0,45	760,81	517,79
2027	8,16	13.800,18	8.696,45	0,00	0,00	0,00	0,45	760,81	479,44
2028	8,16	13.800,18	8.052,27	0,00	0,00	0,00	0,45	760,81	443,92
2029	8,16	13.800,18	7.455,81	0,00	0,00	0,00	0,45	760,81	411,04
2030	8,16	13.800,18	6.903,52	0,00	0,00	0,00	0,45	760,81	380,59
Total			95.310,92			0,00			4.877,04
Anos		Alternativa 4			Alternativa 5			Alternativa 6	
	ΔPerdas (MW)	Custo (R\$x1000)	VP (R\$x1000)	ΔPerdas (MW)	Custo (R\$x1000)	VP (R\$x1000)	ΔPerdas (MW)	Custo (R\$x1000)	VP (R\$x1000)
2021	5,26	8.897,20	8.897,20	0,63	1.056,68	1.056,68	3,19	5.389,04	5.389,04
2022	5,25	8.876,07	8.218,58	0,80	1.352,54	1.252,36	3,26	5.515,84	5.107,26
2023	6,21	10.503,35	9.004,93	1,93	3.254,56	2.790,26	4,25	7.185,39	6.160,31
2024	6,36	10.756,95	8.539,21	2,71	4.585,97	3.640,49	4,96	8.390,00	6.660,25
2025	6,36	10.756,95	7.906,68	2,71	4.585,97	3.370,82	4,96	8.390,00	6.166,90
2026	6,36	10.756,95	7.321,00	2,71	4.585,97	3.121,13	4,96	8.390,00	5.710,09
2027	6,36	10.756,95	6.778,70	2,71	4.585,97	2.889,94	4,96	8.390,00	5.287,12
2028	6,36	10.756,95	6.276,58	2,71	4.585,97	2.675,87	4,96	8.390,00	4.895,48
2029	6,36	10.756,95	5.811,65	2,71	4.585,97	2.477,66	4,96	8.390,00	4.532,86
2030	6,36	10.756,95	5.381,15	2,71	4.585,97	2.294,13	4,96	8.390,00	4.197,09
Total			74.135,69			25.569,33			54.106,41

8.3 Comparação Econômica das Alternativas

A Tabela 8-9 e o Figura 8-1 apresentam a comparação econômica das alternativas levando-se em consideração custos de investimentos (obras não comuns) e diferencial de perdas. A comparação econômica resultou em empate entre as Alternativas 1 e 2, dentro da margem de 5% de diferença.

	Rendimentos Nece	ssários (R	x 1000)	Perdas (R\$ x	1000)	Total (R\$ x 1000)			
Alternativas	Custos	(%)	Ordem	Diferencial	Ordem	Custos	(%)	Ordem	
Alternativa 1	196.938,96	100,0%	1º	95.310,92	6º	292.249,88	100,0%	1º	
Alternativa 2	296.760,19	150,7%	3º	0,00	1º	296.760,19	101,5%	2º	
Alternativa 3	334.033,22	169,6%	5º	4.877,04	2º	338.910,26	116,0%	4º	
Alternativa 4	242.059,09	122,9%	2º	74.135,69	5º	316.194,79	108,2%	3º	
Alternativa 5	343.794,99	174,6%	6º	25.569,33	3º	369.364,32	126,4%	6º	
Alternativa 6	306.521,95	155,6%	4º	54.106,41	4º	360.628,37	123,4%	5º	

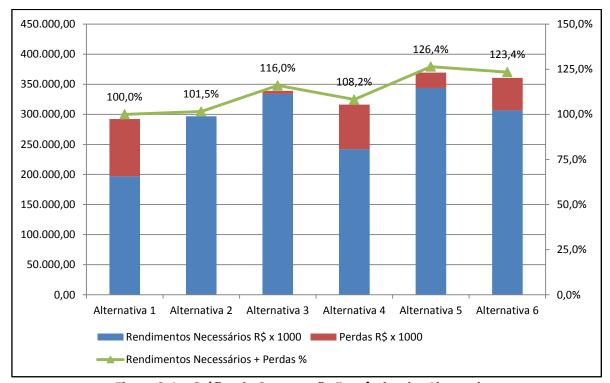


Figura 8-1 – Gráfico de Comparação Econômica das Alternativas

A Alternativa 1 possui menor investimento inicial, no entanto sua topologia caracteriza um sistema elétrico com objetivo exclusivo de atendimento à geração da região do Seridó e não trás nenhum outro benefício às regiões adjacentes.

Empatada economicamente com a Alternativa 1, a Alternativa 2 possui vantagens para o sistema elétrico da região, que fazem dela a melhor opção do ponto de vista técnico. A Alternativa 2 funciona como um eixo que conecta as regiões metropolitanas e produtoras de energia da Área Leste da Região Nordeste às interligações elétricas dos subsistemas N-NE-SE, proporcionando as menores perdas elétricas dentre as alternativas estudadas e criando uma nova rota que contribui para aumentar a confiabilidade do sistema elétrico, principalmente durante contingências múltiplas.

Em cenários de elevada geração das usinas eólicas do RN, por exemplo, e contingência dupla das linhas de transmissão João Câmara III – Açu III C1 e C2, a Alternativa 2 possui desempenho superior à Alternativa 1 em relação aos níveis de tensão encontrados nas barras 500 kV das subestações Recife II e Pau Ferro, proporcionando menor corte de carga e geração.

Desta forma este estudo recomenda a implantação da Alternativa 2.

9 ANÁLISE DE SOBRETENSÕES À FREQUÊNCIA INDUSTRIAL 60 HZ

9.1 Energização de Linhas de Transmissão

Este item apresenta os resultados dos estudos de sobretensões à frequência industrial, realizados com o objetivo de verificar a possibilidade de ocorrência de valores proibitivos de tensões temporárias ou sustentadas, que venham a comprometer os equipamentos conectados ao sistema, em consequência das manobras programadas e/ou intempestivas dos circuitos da região onde a linha de transmissão será implantada, indicando se há necessidade de reatores adicionais na linha de transmissão para permitir a energização.

Com o objetivo de obter perfil de tensão mais alto nas subestações terminais durante a préenergização e atender ao caso mais crítico, considerou-se o cenário representado pelo Plano Decenal de Expansão de Energia – PDE 2024 – Leve – Norte Seco, disponibilizado em 26/01/2016 no portal da EPE, que apresenta fluxo reduzido nas linhas de transmissão da região em análise.

A análise foi efetuada considerando a configuração de reatores proposta nas avaliações de desempenho em regime permanente. Durante o processo de energização não foi admitida variação de tensão superior a 5% em nenhuma subestação.

A Tabela 9-1 apresenta o resumo dos resultados obtidos após a energização de cada LT recomendada neste estudo, o procedimento realizado está demonstrado com detalhes nos itens seguintes.

Tabela 9-1 – Energização de Linhas de Transmissão

Energização de Linhas	Terminal		Vi	Vf	DV		Vi	Vf	DV	Vt	DV
de Transmissão	Manobrado	Barra	(pu)	(pu)	(%)	Barra	(pu)	(pu)	(%)	(pu)	(%)
C. Grande III - S. Luzia II 500kV	C. Grande III	S. Luzia II	-	-	-	C. Grande III	1,093	1,110	1,53%	1,125	1,35%
C. Grande III - S. Luzia II 500kV	S. Luzia II	S. Luzia II	-	1,125	-	C. Grande III	1,110	1,110	0,00%	-	-
S. Luzia II - Milagres II 500kV	S. Luzia II	S. Luzia II	1,079	1,122	3,83%	Milagres II	1,096	1,099	0,27%	1,148	2,32%
S. Luzia II - Milagres II 500kV	Milagres II	S. Luzia II	1,122	1,100	-2,00%	Milagres II	1,099	1,105	0,54%	1	-
S. Luzia II - Milagres II 500kV	Milagres II	S. Luzia II	-	-	-	Milagres II	1,096	1,110	1,26%	1,136	2,34%
S. Luzia II - Milagres II 500kV	S. Luzia II	S. Luzia II	-	1,136	-	Milagres II	1,110	1,110	0,00%	-	-
C. Grande III - S. Luzia II 500kV	S. Luzia II	S. Luzia II	1,067	1,101	3,09%	C. Grande III	1,093	1,094	0,09%	1,101	0,00%
C. Grande III - S. Luzia II 500kV	C. Grande III	S. Luzia II	1,101	1,095	-0,55%	C. Grande III	1,094	1,094	0,00%	-	-

Linha de Transmissão Campina Grande III - Santa Luzia II 500kV

A simulação da sequência de manobras para energização da LT Campina Grande III — Santa Luzia II 500 kV, foi realizada a partir de ambos os terminais.

Sequência de manobras 1 (Figura 9-1):

- Ajustou-se a tensão inicial da barra de Campina Grande III em 1,093 pu;
- Simulou-se o fechamento do terminal Campina Grande III. Os níveis de tensão encontrados na barra de Campina Grande III e no terminal aberto de Santa Luzia II foram 1,110 pu e 1,125 pu, respectivamente.

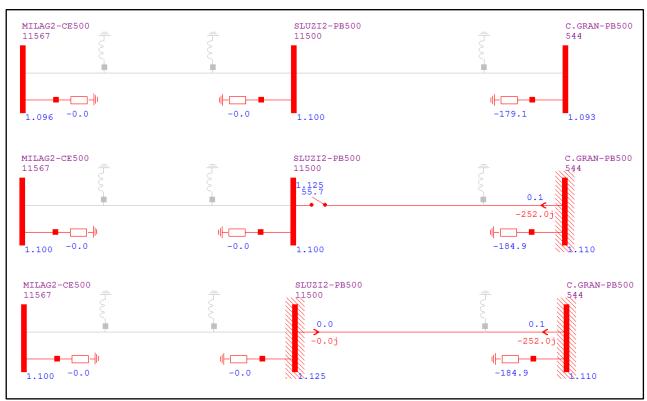


Figura 9-1 - Energização da LT Campina Grande III - Santa Luzia II 500kV - Sequência 1

Sequência de manobras 2 (Figura 9-2):

- Ajustou-se a tensão inicial da barra de Santa Luzia II em 1,067 pu;
- Simulou-se o fechamento do terminal Santa Luzia II. O nível de tensão encontrado na barra de Santa Luzia II e no terminal aberto de Campina Grande III foi de 1,101 pu.
- Simulou-se o fechamento do terminal Campina Grande III. O nível de tensão na barra de Santa Luzia II foi reduzido a 1,095 pu.

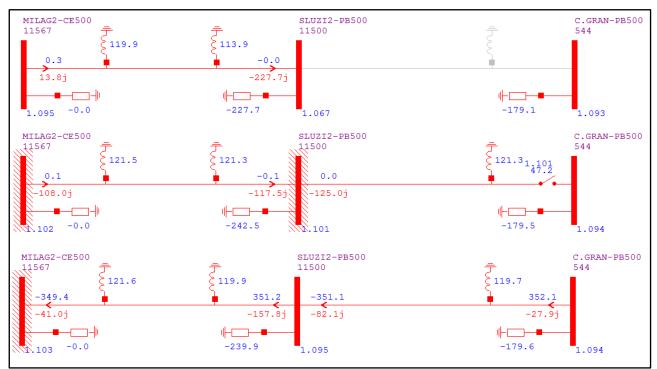


Figura 9-2 - Energização da LT Campina Grande III - Santa Luzia II 500kV - Sequência 2

<u>Linha de Transmissão Santa Luzia II – Milagres II 500kV</u>

Sequência de manobras 1 (Figura 9-3):

- Ajustou-se a tensão inicial da barra de Santa Luzia II em 1,079 pu;
- Simulou-se o fechamento do terminal Santa Luzia II. Os níveis de tensão encontrados na barra de Santa Luzia II e no terminal aberto de Milagres II foram 1,222 pu e 1,148 pu, respectivamente.
- Simulou-se o fechamento do terminal Milagres II. O nível de tensão na barra de Santa Luzia II foi reduzido a 1,100 pu.

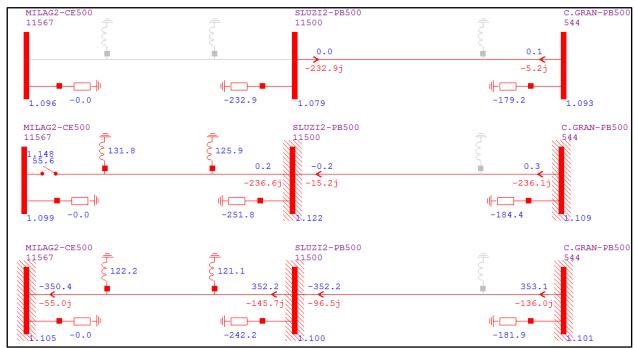


Figura 9-3 – Energização da LT Santa Luzia II – Milagres II 500kV – Sequência 1

Sequência de manobras 2 (Figura 9.4):

- Ajustou-se a tensão inicial da barra de Milagres II em 1,096 pu;
- Simulou-se o fechamento do terminal Milagres II. Os níveis de tensão encontrados na barra de Milagres II e no terminal aberto de Santa Luzia II foram 1,110 pu e 1,136 pu, respectivamente.

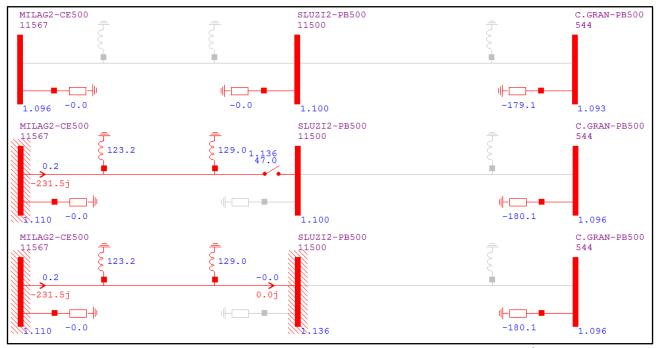


Figura 9-4 - Energização da LT Santa Luzia II - Milagres II 500kV - Sequência 2

9.2 Rejeição de Carga

As análises de rejeição de carga visam verificar a existência de sobretensões acima da suportável pelos equipamentos quando ocorre abertura intempestiva em um dos terminais das linhas de transmissão. A situação mais crítica é a abertura de apenas um destes terminais, devido à atuação da proteção ou falha humana.

Foi realizada a análise de rejeição de carga considerando o cenário de maior fluxo de potência nas linhas de transmissão estudadas.

A Tabela 9-2 apresenta o resumo dos resultados obtidos após a análise de rejeição de carga.

Rejeição de Carga	Terminal		Vi	Vf	DV	B	Vi	Vf	DV	Vt	DV
	Manobrado	Barra	(pu)	(pu)	(%)	Barra	(pu)	(pu)	(%)	(pu)	(%)
C. Grande III - S. Luzia II 500kV	C. Grande III	S. Luzia II	1,088	1,095	0,64%	C. Grande III	1,086	1,080	-0,56%	1,095	0,00%
C. Grande III - S. Luzia II 500kV	S. Luzia II	S. Luzia II	1,088	1,060	-2,64%	C. Grande III	1,086	1,086	0,00%	1,101	1,38%
S. Luzia II - Milagres II 500kV	S. Luzia II	S. Luzia II	1,088	1,087	-0,09%	Milagres II	1,074	1,074	0,00%	1,099	2,33%
S. Luzia II - Milagres II 500kV	Milagres II	S. Luzia II	1,088	1,112	2,16%	Milagres II	1,074	1,064	-0,94%	1,137	2,25%

Tabela 9-2 - Rejeição de Carga

<u>Linha de Transmissão Campina Grande III – Santa Luzia II 500kV</u>

Atuação da proteção no terminal Campina Grande III (Figura 9-5):

- Ajustou-se a tensão inicial das barras de Santa Luzia II e de Campina Grande III para 1,088 pu e 1,086 pu, respectivamente;
- Simulou-se a abertura do terminal Campina Grande III. Os níveis de tensão encontrados nas barras de Santa Luzia II e de Campina Grande III foram de 1,095 pu e 1,080 pu, respectivamente. O nível de tensão encontrado no terminal aberto de Campina Grande III é de 1,095 pu.

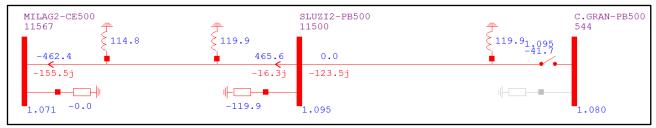


Figura 9-5 - LT Santa Luzia II - Campina Grande III 500kV - Abertura do Terminal Campina Grande III

Atuação da proteção no terminal Santa Luzia II (Figura 9-6):

- Ajustou-se a tensão inicial das barras de Santa Luzia II e de Campina Grande III para 1,088 pu e 1,086 pu, respectivamente;
- Simulou-se a abertura do terminal Santa Luzia II. Os níveis de tensão encontrados nas barras de Santa Luzia II e de Campina Grande III foram de 1,060 pu e 1,086 pu, respectivamente. O nível de tensão encontrado no terminal aberto de Santa Luzia II é de 1,101 pu.

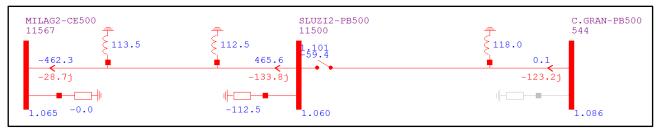


Figura 9-6 - LT Santa Luzia II - Campina Grande III 500kV - Abertura do Terminal Santa Luzia II

<u>Linha de Transmissão Santa Luzia II – Milagres II 500kV</u>

Atuação da proteção no terminal Milagres II (Figura 9-7):

- Ajustou-se a tensão inicial das barras de Santa Luzia II e de Milagres II para 1,088 pu e 1,074 pu, respectivamente;
- Simulou-se a abertura do terminal Milagres II. Os níveis de tensão encontrados nas barras de Santa Luzia II e de Milagres II foram de 1,112 pu e 1,064 pu, respectivamente. O nível de tensão encontrado no terminal aberto de Milagres II é de 1,137 pu.

Figura 9-7 – LT Santa Luzia II – Milagres II 500kV – Abertura do Terminal Milagres II

Atuação da proteção no terminal Santa Luzia II (Figura 9-8):

- Ajustou-se a tensão inicial das barras de Santa Luzia II e de Milagres II para 1,088 pu e 1,074 pu, respectivamente;
- Simulou-se a abertura do terminal Santa Luzia II. Os níveis de tensão encontrados nas barras de Santa Luzia II e de Milagres II foram de 1,087 pu e 1,074 pu, respectivamente. O nível de tensão encontrado no terminal aberto de Santa Luzia II é de 1,099 pu.

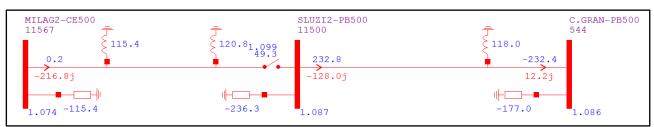


Figura 9-8 - LT Santa Luzia II - Milagres II 500kV - Abertura do Terminal Santa Luzia II

10 ANÁLISE DE CURTO CIRCUITO

O cálculo dos níveis de curto circuito foi efetuado para a alternativa vencedora (Alternativa 2), considerando o sistema em regime subtransitório, com todas as máquinas sincronizadas, utilizando a base de dados referente ao Plano Decenal de Expansão de Energia – PDE 2024 – Leve – Norte Seco.

Os valores referentes às correntes de curto circuito para as principais subestações de Rede Básica e Rede Básica de Fronteira são apresentados na Tabela 10-1, para o ano de 2021.

Tabela 10-1 - Correntes de curto circuito referentes ao ano 2021

Barra			Curto C	Circuito	
Nome	Número	3Ø [kA]	X/R	1Ø [kA]	X/R
Santa Luzia II 500 kV	11500	17,58	12,97	10,47	5,74
Milagres II 500 kV	11567	24,15	11,08	18,39	8,34
Milagres 500 kV	521	23,82	11,08	18,24	8,46
Milagres 230 kV	221	32,52	13,33	29,92	10,76
Milagres 69 kV	621	21,27	72,51	-	-
Campina Grande III 500 kV	544	21,07	10,09	16,52	6,87
Campina Grande III 230 kV	12244	29,36	12,85	27,34	9,60
Campina Grande II 230 kV B1	244	28,43	11,35	28,17	10,92
Campina Grande II 230 kV B2	11244	28,42	11,35	28,17	10,92
Campina Grande II 69 kV	644	19,92	54,16	-	-

11 ATENDIMENTO À CARGA

Este estudo avaliou a necessidade de implantação de um novo ponto de suprimento 230-69 kV na SE Santa Luzia II para atender o crescimento das cargas da distribuidora Energisa/PB conectadas às regionais Campina Grande II e Coremas.

Os dados de mercado informados pelas distribuidoras Energisa/PB e Energisa Borborema estão apresentados nas Tabelas 11-1 e 11-2.

Tabela 11-1 - Cargas conectadas à SE Campina Grande II 69 kV

ENIEDCICA	l abela 11									2020	2020
ENERGISA	PATAMAR DE CARGA	2021	2022	2023	2024	2025	2026	2027	2028		2030
SUBESTAÇÃO		MW		MW							
	PESADA	3,95	4,03	4,11	4,20	4,28	4,37	4,45	4,54		4,73
ARR	MÉDIA	2,60	2,65	2,70	2,75	2,81	2,87	2,92	2,98	,	3,10
	LEVE	2,11	2,16	2,20	2,24	2,29	2,33	2,38	2,43		2,53
	PESADA	7,78	7,93	8,09	8,25	8,42	8,59	8,76	8,93		9,29
BQV	MÉDIA	7,43	7,57	7,73	7,88	8,04	8,20	8,36	8,53	8,70	8,87
	LEVE	3,41	3,47	3,54	3,61	3,69	3,76	3,83	3,91	3,99	4,07
	PESADA	1,66	1,69	1,72	1,76	1,79	1,83	1,86	1,90	1,94	1,98
BVA	MÉDIA	3,94	4,02	4,10	4,18	4,27	4,35	4,44	4,53	4,62	4,71
	LEVE	0,65	0,66	0,68	0,69	0,70	0,72	0,73	0,75	0,76	0,78
	PESADA	11,82	12,06	12,30	12,54	12,79	13,05	13,31	13,58	13,85	14,13
ESP	MÉDIA	7,51	7,66	7,82	7,97	8,13	8,29	8,46	8,63	8,80	8,98
	LEVE	4,05	4,14	4,22	4,30	4,39	4,48	4,57	4,66	4,75	4,85
	PESADA	6,52	6,72	6,92	7,13	7,34	7,56	7,79	8,02	8,26	8,51
RIC	MÉDIA	5,10	5,26	5,41	5,58	5,74	5,92	6,09	6,28	6,46	6,66
	LEVE	3,54	3,64	3,75	3,86	3,98	4,10	4,22	4,35	4,48	4,61
	PESADA	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10
CBQ	MÉDIA	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10
	LEVE	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10
	PESADA	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
CGT	MÉDIA	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
	LEVE	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
	PESADA	11,62	11,87	12,12	12,37	12,64	12,90	13,18	13,46	13,74	14,03
JZR	MÉDIA	10,92	11,15	11,39	11,63	11,88	12,13	12,39	12,65	12,92	13,19
	LEVE	3,91	4,00	4,08	4,17	4,26	4,35	4,44	4,53	4,63	4,73
	PESADA	4,47	4,56	4,65	4,74	4,83	4,93	5,03	5,13	5,23	5,34
SJC	MÉDIA	2,70	2,76	2,81	2,87	2,93	2,99	3,05	3,11		3,23
	LEVE	2,25	2,30	2,34	2,39	2,44	2,49	2,54	2,59	1,94 4,62 0,76 13,85 8,80 4,75 8,26 6,46 4,48 3,10 3,10 4,00 4,00 4,00 13,74 12,92	2,69
	PESADA	7,93	8,17	8,42	8,67	8,93	9,20	9,47	9,76		10,35
SME	MÉDIA	6,12	6,30	6,49	6,69	6,89	7,09	7,31	7,53		7,98
Ç.,,,_	LEVE	3,43	3,53	3,64	3,75	3,86	3,98	4,10	4,22		4,48
	PESADA	4,68	4,78	4,87	4,97	5,07	5,17	5,27	5,38		5,60
SLZ	MÉDIA	5,43	5,54	5,65	5,77	5,88	6,00	6,12	6,24		6,49
JLL	LEVE	2,65	2,70	2,76	2,81	2,87	2,93	2,98	3,04		3,17
	LLVL	2,03	2,70	2,70	2,01	2,07	۷,53	۷,50	3,04	MW 4,63 3,04 2,48 9,11 8,70 3,99 1,94 4,62 0,76 13,85 8,80 4,75 8,26 6,46 4,48 3,10 3,10 3,10 4,00 4,00 4,00 4,00 13,74 12,92 4,63 5,23 3,17 2,64 10,05 7,75 4,35 5,49 6,37	3,1/

Tabela 11-1 – Continuação

ENERGISA	PATAMAR	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
SUBESTAÇÃO	DE CARGA	MW									
,	PESADA	21,95	22,39	22,84	23,30	23,76	24,24	24,72	25,22	25,72	26,24
ABR	MÉDIA	23,16	23,62	24,09	24,57	25,06	25,57	26,08	26,60	27,13	27,67
	LEVE	7,68	7,83	7,99	8,15	8,31	8,48	8,65	8,82	9,00	9,18
	PESADA	10,47	10,68	10,89	11,11	11,33	11,56	11,79	12,03	12,27	12,51
AER	MÉDIA	10,68	10,89	11,11	11,33	11,56	11,79	12,03	12,27	12,51	12,76
	LEVE	0,23	0,23	0,23	0,24	0,24	0,25	0,25	0,26	0,26	0,27
	PESADA	20,05	20,46	20,86	21,28	21,71	22,14	22,58	23,04	23,50	23,97
BVT A	MÉDIA	18,19	18,55	18,92	19,30	19,69	20,08	20,48	20,89	21,31	21,74
	LEVE	6,95	7,09	7,23	7,38	7,53	7,68	7,83	7,99	8,15	8,31
	PESADA	3,88	3,96	4,04	4,12	4,20	4,29	4,37	4,46	4,55	4,64
BVT B	MÉDIA	4,53	4,62	4,71	4,81	4,90	5,00	5,10	5,20	5,31	5,41
	LEVE	1,23	1,26	1,28	1,31	1,33	1,36	1,39	1,41	1,44	1,47
	PESADA	19,60	19,99	20,39	20,80	21,21	21,64	22,07	22,51	22,96	23,42
CGD	MÉDIA	19,90	20,29	20,70	21,11	21,54	21,97	22,41	22,86	23,31	23,78
	LEVE	1,94	1,98	2,02	2,06	2,10	2,14	2,18	2,23	2,27	2,32
	PESADA	20,56	20,97	21,39	21,81	22,25	22,70	23,15	23,61	24,09	24,57
CGU	MÉDIA	23,93	24,40	24,89	25,39	25,90	26,42	26,94	27,48	28,03	28,59
	LEVE	5,83	5,94	6,06	6,18	6,31	6,43	6,56	6,69	6,83	6,96
	PESADA	25,79	26,31	26,84	27,37	27,92	28,48	29,05	29,63	30,22	30,83
CTL	MÉDIA	25,82	26,34	26,86	27,40	27,95	28,51	29,08	29,66	30,25	30,86
	LEVE	5,83	5,95	6,06	6,19	6,31	6,44	6,56	6,70	6,83	6,97
	PESADA	8,21	8,38	8,54	8,72	8,89	9,07	9,25	9,43	9,62	9,81
QMD	MÉDIA	8,12	8,28	8,45	8,62	8,79	8,97	9,14	9,33	9,51	9,70
	LEVE	3,95	4,03	4,11	4,20	4,28	4,37	4,45	4,54	4,63	4,73

Tabela 11-2 - Cargas conectadas à SE Coremas 69 kV

ENERGISA	PATAMAR	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
SUBESTAÇÃO	DE CARGA	MW	MW								
	PESADA	3,18	3,25	3,33	3,40	3,48	3,57	3,65	3,74	3,82	3,91
BJC	MÉDIA	2,84	2,90	2,97	3,04	3,11	3,18	3,26	3,34	3,41	3,49
	LEVE	1,85	1,90	1,94	1,99	2,04	2,08	2,13	2,18	2,23	2,29
	PESADA	21,87	22,53	23,20	23,90	24,62	25,35	26,12	26,90	27,71	28,54
CJZ	MÉDIA	20,20	20,81	21,43	22,08	22,74	23,42	24,12	24,85	25,59	26,36
	LEVE	11,21	11,54	11,89	12,25	12,61	12,99	13,38	13,78	14,20	14,62
	PESADA	3,19	3,26	3,33	3,40	3,47	3,54	3,62	3,69	3,77	3,85
CRM	MÉDIA	3,71	3,79	3,87	3,95	4,03	4,12	4,21	4,30	4,39	4,48
	LEVE	1,88	1,92	1,97	2,01	2,05	2,09	2,14	2,18	3,69 3,77 4,30 4,39 2,18 2,23 9,09 9,27	2,28
	PESADA	7,91	8,07	8,23	8,39	8,56	8,73	8,91	9,09	9,27	9,45
CTR	MÉDIA	7,31	7,45	7,60	7,76	7,91	8,07	8,23	8,39	8,56	8,73
	LEVE	4,77	4,86	4,96	5,06	5,16	5,26	5,37	5,48	5,59	5,70
	PESADA	5,46	5,63	5,79	5,97	6,15	6,33	6,52	6,72	6,92	7,13
IBR	MÉDIA	4,79	4,94	5,08	5,24	5,39	5,56	5,72	5,89	6,07	6,25
	LEVE	2,96	3,04	3,14	3,23	3,33	3,43	3,53	3,64	3,74	3,86
	PESADA	8,91	9,18	9,45	9,74	10,03	10,33	10,64	10,96	11,29	11,63
ITO	MÉDIA	8,33	8,58	8,83	9,10	9,37	9,65	9,94	10,24	10,55	10,86
	LEVE	4,27	4,40	4,54	4,67	4,81	4,96	5,10	5,26	5,42	5,58

Tabela 11-2 - Continuação

ENEDCICA		2021		a 11-2 -		iuaçao	2026	2027	2020	2020	2030
ENERGISA	PATAMAR	2021	2022	2023	2024	2025	2026	2027	2028	2029	
SUBESTAÇÃO	DE CARGA	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
	PESADA	1,73	1,76	1,80	1,83	1,87	1,91	1,94	1,98	2,02	2,06
JRC	MÉDIA	1,39	1,42	1,45	1,48	1,51	1,54	1,57	1,60	1,63	1,66
	LEVE	1,06	1,09	1,11	1,13	1,15	1,18	1,20	1,22		1,27
	PESADA	4,89	5,04	5,19	5,34	5,50	5,67	5,84	6,01		6,38
MLT	MÉDIA	4,51	4,65	4,78	4,93	5,08	5,23	5,39	5,55		5,88
	LEVE	2,66	2,74	2,82	2,90	2,99	3,08	3,17	3,27		3,47
	PESADA	8,97	9,23	9,51	9,80	10,09	10,39	10,71	11,03		11,70
PBL	MÉDIA	10,95	11,27	11,61	11,96	12,32	12,69	13,07	13,46		14,28
	LEVE	6,11	6,29	6,48	6,67	6,87	7,08	7,29	7,51	7,73	7,97
	PESADA	5,71	5,82	5,94	6,06	6,18	6,30	6,43	6,56	6,69	6,82
PCO	MÉDIA	4,51	4,60	4,69	4,79	4,88	4,98	5,08	5,18	5,29	5,39
	LEVE	3,04	3,10	3,16	3,23	3,29	3,36	3,43	3,49	3,56	3,64
	PESADA	2,41	2,48	2,55	2,62	2,69	2,76	2,84	2,91	2,99	3,07
PLT	MÉDIA	2,84	2,91	2,99	3,08	3,16	3,25	3,34	3,43	3,52	3,62
	LEVE	2,01	2,07	2,12	2,18	2,24	2,30	2,37	2,43	2,50	2,57
	PESADA	7,46	7,68	7,91	8,15	8,40	8,65	8,91	9,17	9,45	9,73
SBT	MÉDIA	8,43	8,68	8,94	9,21	9,49	9,77	10,06	10,37	10,68	11,00
	LEVE	5,77	5,94	6,12	6,30	6,49	6,69	6,89	7,09	7,30	7,52
	PESADA	2,27	2,32	2,36	2,41	2,46	2,51	2,56	2,61	2,66	2,71
SGL	MÉDIA	2,84	2,89	2,95	3,01	3,07	3,13	3,19	3,26	3,32	3,39
	LEVE	1,87	1,91	1,95	1,99	2,03	2,07	2,11	2,15	5,29 3,56 2,99 3,52 2,50 9,45 10,68 7,30 2,66 3,32 2,19 5,23 3,91 2,72 18,81 19,00 11,17 3,57 2,67 1,85 1,40 1,40 1,40 14,94 15,44 8,64 20,56 21,62	2,24
	PESADA	4,47	4,56	4,65	4,74	4,83	4,93	5,03	5,13	5,23	5,34
SPX	MÉDIA	3,33	3,40	3,47	3,54	3,61	3,68	3,76	3,83	3,91	3,99
	LEVE	2,32	2,37	2,42	2,46	2,51	2,56	2,62	2,67	2,72	2,78
	PESADA	16,06	16,38	16,71	17,04	17,38	17,73	18,08	18,45	18,81	19,19
SZA	MÉDIA	16,22	16,54	16,87	17,21	17,55	17,90	18,26	18,63	19,00	19,38
	LEVE	9,54	9,73	9,92	10,12	10,32	10,53	10,74	10,96	11,17	11,40
	PESADA	3,04	3,10	3,17	3,23	3,29	3,36	3,43	3,50	3,57	3,64
URN	MÉDIA	2,28	2,33	2,37	2,42	2,47	2,52	2,57	2,62	2,67	2,73
	LEVE	1,57	1,61	1,64	1,67	1,70	1,74	1,77	1,81	1,85	1,88
	PESADA	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40
ASA	MÉDIA	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40		1,40
	LEVE	1,40	1,40	1,40	1,40	1,40	1,40	1,40	1,40		1,40
	PESADA	12,10	12,42	12,75	13,09	13,44	13,80	14,17	14,55	14,94	15,34
JTB	MÉDIA	12,50	12,84	13,18	13,53	13,89	14,27	14,65	15,04		15,85
	LEVE	6,99	7,18	7,37	7,57	7,77	7,98	8,19	8,41		8,87
	PESADA	16,23	16,71	17,21	17,73	18,26	18,81	19,38	19,96		21,17
PTS	MÉDIA	17,07	17,58	18,11	18,65	19,21	19,79	20,38	20,99		22,27
	LEVE	8,76	9,02	9,29	9,57	9,86	10,16	10,46	10,77	11,10	11,43
	PESADA	5,08	5,19	5,29	5,40	5,50	5,61	5,73	5,84	5,96	6,08
TXR	MÉDIA	3,22	3,28	3,35	3,41	3,48	3,55	3,62	3,69	3,77	3,84
.244	LEVE	2,41	2,46	2,51	2,56	2,61	2,67	2,72	2,77	2,83	2,89
	۷	-,-1	-,-0	_,51	_,50	-,01	_,0,	-,,2	-,,,	_,03	_,03

Em relação à capacidade de transformação 230-69 kV das subestações Campina Grande II e Coremas, ambas atualmente operam com 3 transformadores 230-69 kV de 100 MVA, representando a capacidade instalada de 300 MVA e possibilidade de suprimento a 200 MVA de carga em situação de contingência simples de um dos transformadores, devido ao critério "N-1".

Foram realizadas simulações da rede de distribuição para o ano de 2030, patamar de carga pesada, conforme Figuras 11-1 e 11-2. Deve-se ressaltar que a simulação da rede de distribuição adotou obras de referência, tais como a implantação de novos circuitos, transformadores 69-13,8 kV e bancos de capacitores, com o objetivo de atender o crescimento de carga na região dentro dos padrões de qualidade exigidos pelo ONS.

Foram encontradas sobrecargas em condição de emergência nos transformadores da subestação Campina Grande II no ano inicial do estudo. De forma a solucionar este problema, recomenda-se a implantação do 4º transformador 230/69 kV de 100 MVA na SE Campina Grande II, conforme consulta realizada à concessionária CHESF e apresentada no Anexo 15.3. Esta obra deve ser avaliada e implantada conforme cronograma a ser estabelecido pelo ONS.

Cabe destacar que, após implantação do 4º transformador 230/69 kV de 100 MVA na SE Campina Grande II em 2021, não são esperadas novas sobrecargas na transformação 230-69 kV das subestações Campina Grande II e Coremas até o ano horizonte do estudo. Portanto, não há necessidade de um novo ponto de suprimento na SE Santa Luzia II. No entanto, recomenda-se que a SE Santa Luzia II seja implantada de modo a comportar futuramente um novo setor em 69 kV, possibilitando o atendimento de cargas não previstas inicialmente pela Energisa/PB ou de cargas que vierem a se concretizar após o horizonte deste estudo.

Os resultados da simulação foram reunidos na Tabela 11-3.

Tabela 11-3 - Carregamento máximo nos transformadores de fronteira 230-69 kV

	Ano	2021	Ano 2030				
Subestação	Capacidade de Suprimento	Carregamento Máximo	Capacidade de Suprimento	Carregamento Máximo			
Campina Grande II	300 [MVA]	216,2 [MVA]	300 [MVA]	258,8 [MVA]			
Coremas	200 [MVA]	148,8 [MVA]	200 [MVA]	187,3 [MVA]			

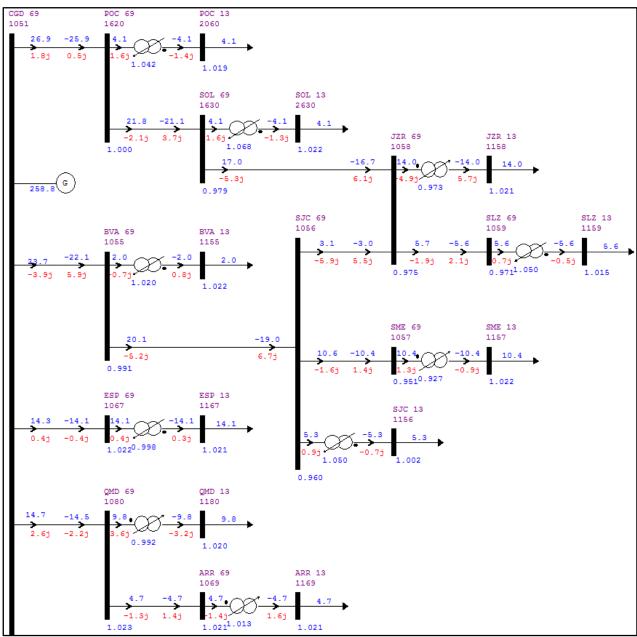


Figura 11-1 – Regional Campina Grande II, carga pesada, ano 2030 (Parte 1)

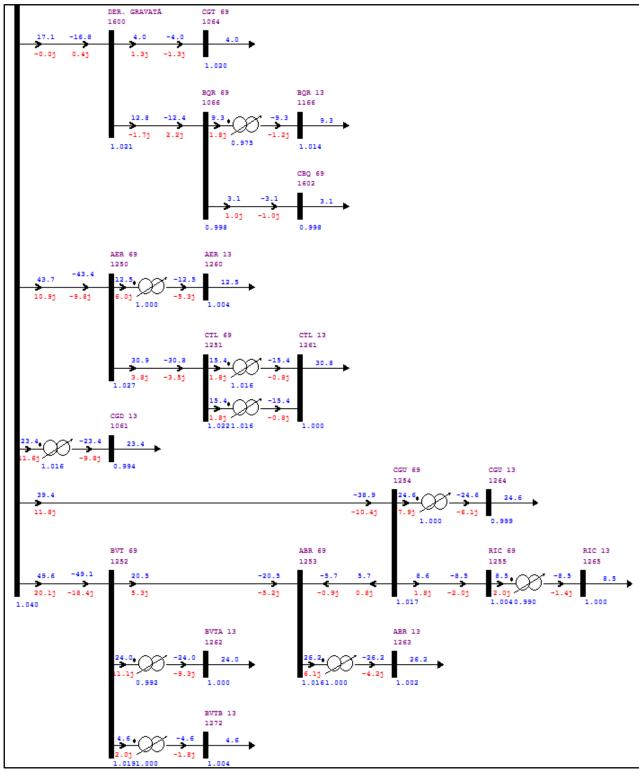


Figura 11-2 – Regional Campina Grande II, carga pesada, ano 2030 (Parte 2)

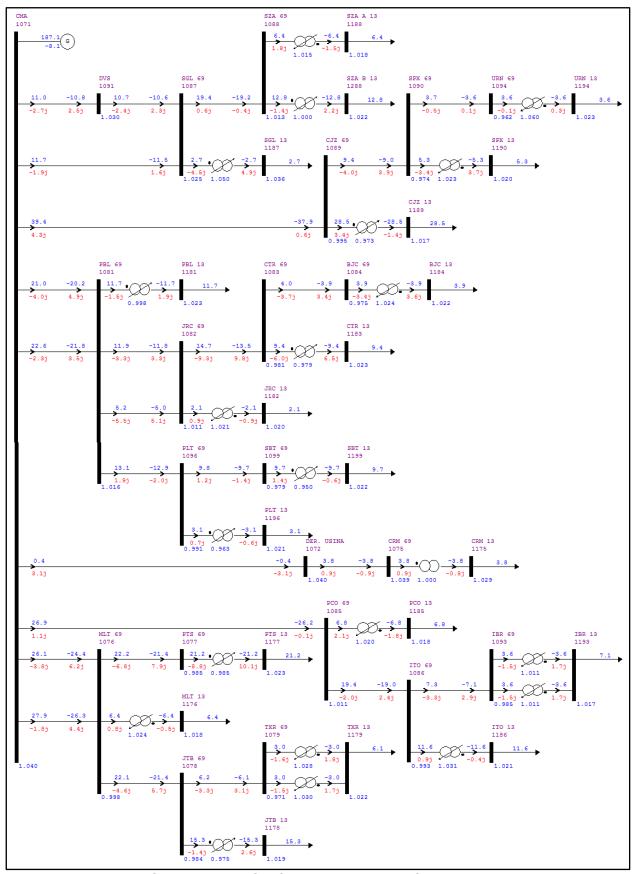


Figura 11-3 – Regional Coremas, carga pesada, ano 2030

É importante destacar ainda que a SE Currais Novos II, licitada inicialmente para atender às cargas da Cosern e permitir a conexão de novos geradores das regiões de Serra de Santana e do Seridó Potiguar, está em processo de revogação de concessão, conforme Portaria nº 10 do MME publicada no Diário Oficial da União em 8 de janeiro de 2016. Desta forma, a previsão de implantação futura do setor em 69kV na SE Santa Luzia II pode oferecer uma alternativa para a região, frente às incertezas relacionadas à SE Currais Novos II.

A Tabela 11-4 apresenta as informações de mercado da Cosern.

Tabela 11-4 – Cargas conectadas à SE Currais Novos II

COSERN	PATAMAR	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
SUBESTAÇÃO	DE CARGA	MW	MW								
SÃO JOÃO DO SABUGI	PESADA	2,51	2,66	2,82	2,99	3,17	3,36	3,56	3,77	4,00	4,24
	MÉDIA	2,95	3,13	3,31	3,51	3,72	3,95	4,18	4,43	4,70	4,98
JABOUI	LEVE	1,76	1,86	1,97	2,09	2,22	2,35	2,49	2,64	2,80	2,97
	PESADA	19,00	20,14	21,35	22,63	23,98	25,42	26,95	28,56	30,28	32,10
CURRAIS NOVOS I	MÉDIA	18,32	19,42	20,59	21,82	23,13	24,52	25,99	27,55	29,20	30,95
	LEVE	9,67	10,25	10,87	11,52	12,21	12,94	13,72	14,54	13	16,34
	PESADA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,66	3,79
SÃO FERNANDO	MÉDIA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	4,37	4,53
	LEVE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,10	2,18
	PESADA	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65
SRM	MÉDIA	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65
	LEVE	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65	6,65
	PESADA	7,13	7,30	7,48	7,65	7,83	8,02	8,20	8,40	8,59	8,79
ACARI	MÉDIA	8,65	8,86	9,07	9,29	9,50	9,73	9,95	10,19	10,43	10,67
	LEVE	4,71	4,82	4,94	5,05	5,17	5,29	5,42	5,55	MW 4,00 4,70 2,80 30,28 29,20 15,41 3,66 4,37 2,10 6,65 6,65 8,59 10,43 5,68 12,35 14,73 7,09 7,93 11,99 5,83 5,92 6,90	5,81
	PESADA	11,99	12,46	12,93	13,40	13,88	14,39	14,91	15,45	12,35	12,79
CAICÓ	MÉDIA	14,31	14,87	15,43	15,99	16,57	17,17	17,79	18,43	14,73	15,27
	LEVE	6,88	7,15	7,42	7,69	7,97	8,26	8,56	8,87	MW 4,00 4,70 2,80 30,28 29,20 15,41 3,66 4,37 2,10 6,65 6,65 8,59 10,43 5,68 12,35 14,73 7,09 7,93 11,99 5,83 5,92 6,90 4,58 6,07 8,22 4,23 10,33 12,32	7,34
	PESADA	6,48	6,66	6,83	7,00	7,18	7,36	7,55	7,74	7,93	8,13
PARELHAS	MÉDIA	9,80	10,06	10,32	10,58	10,85	11,13	11,41	11,70	11,99	12,30
	LEVE	4,77	4,89	5,02	5,15	5,28	5,41	5,55	5,69	5,83	5,98
	PESADA	4,97	5,09	5,20	5,31	5,43	5,55	5,67	5,79	5,92	6,05
JARDIM DE PIRANHAS	MÉDIA	5,80	5,93	6,06	6,19	6,33	6,47	6,61	6,75	6,90	7,05
TINAMIAS	LEVE	3,85	3,94	4,02	4,11	4,20	4,29	4,39	4,48	MW 4,00 4,70 2,80 30,28 29,20 15,41 3,66 4,37 2,10 6,65 6,65 8,59 10,43 5,68 12,35 14,73 7,09 7,93 11,99 5,83 5,92 6,90 4,58 6,07 8,22 4,23 10,33 12,32	4,68
	PESADA	3,81	4,04	4,28	4,54	4,81	5,10	5,40	5,73	6,07	6,43
JARDIM DO SERIDÓ	MÉDIA	5,16	5,47	5,79	6,14	6,51	6,90	7,32	7,75	8,22	8,71
	LEVE	2,66	2,82	2,98	3,16	3,35	3,55	3,77	3,99	4,23	4,49
	PESADA	7,74	8,04	8,34	8,64	8,96	9,28	9,62	9,97	10,33	10,70
CAICÓ III	MÉDIA	9,23	9,59	9,95	10,31	10,69	11,07	11,47	11,89	12,32	12,77
	LEVE	4,44	4,61	4,79	4,96	5,14	5,33	5,52	5,72	5,93	6,14

12 ANÁLISE SOCIOAMBIENTAL PRELIMINAR

A análise socioambiental preliminar das obras recomendadas nesse estudo está presente na Nota Técnica DEA 31/16 Ref.[4], anexa a esse relatório.

13 REFERÊNCIAS

- [1]. "Diretrizes para Elaboração dos Relatórios Técnicos Referentes às Novas Instalações da Rede Básica", EPE Abril/2005
- [2]. "Critérios e Procedimentos para o Planejamento da Expansão de Sistemas de Transmissão", CCPE/CTET Janeiro/2001
- [3]. "Base de Referência de Preços ANEEL" Junho/2015
- [4]. "Análise Socioambiental do Estudo para Escoamento dos Potenciais Eólicos e Fotovoltaicos da Região do Seridó (Relatório R1) Nota Técnica DEA 31/16" EPE Outubro/2016

14 EQUIPE TÉCNICA

Igor Chaves – EPE/STE

Carolina Moreira Borges – EPE/STE

Fabiano Schmidt – EPE/STE

Igor Chaves – EPE/STE

Leandro Moda – EPE/STE

Luiz Felipe Froede Lorentz - EPE/STE

Marcelo Willian Henriques Szrajbman – EPE/STE

Priscilla de Castro Guarini – EPE/STE

Tiago Campos Rizzotto – EPE/STE

Agradecemos a colaboração dos seguintes técnicos:

Fernando Rodrigues Alves - CHESF

Gustavo H. S. Vieira de Melo - CHESF

José Vieira Almeida Neto – ETN

Fabiana Fontes Orengo – ETN

Silvino Alves de G. N. Neto – Energisa/PB

Ricardo Marques Soares - Energisa/PB

Chou En Lai A. D. Monteiro - COSERN

15 ANEXOS

15.1 Correspondência - Energisa/PB - Expansão da Rede Básica

Rio de Janeiro, 04 de Setembro de 2015.

À EMPRESA DE PESQUISA ENERGÉTICA – EPE Avenida Rio Branco nº 1 – 11º Andar - Centro 20.090-003 – Rio de Janeiro - RJ A/C.: Amilcar Gonçalves Guerreiro

Assunto: Ampliação da Rede Básica NE - Região do Seridó Ocidental Paraibano.

Prezado Senhor Diretor.

Os agentes geradores fotovoltaicos, eólicos e a distribuidora de energia elétrica ENERGISA PARAÍBA, abaixo assinados, vimos conjuntamente por meio desta, respeitosamente solicitar a V.Sª. a apreciação do nosso pedido de ampliação da Rede Básica na região do Seridó Ocidental Paraibano. Trata-se de uma necessidade comum, amparada em dois focos distintos: melhoria no atendimento e continuidade aos consumidores da região na ocorrência de contingências, e necessidade de escoamento da futura energia gerada nessa região oriunda de fontes renováveis, notadamente eólica e fotoelétrica.

A distribuidora ENERGISA PARAÍBA informa que seu sistema apresenta limitações e fragilidade para fins de acesso por parte dos agentes geradores de energia elétrica eólica e fotoelétrica, ora solicitando acesso e prospectando na região. Esclarece, adicionalmente, que para fazer frente a estas solicitações de acesso necessitaria de investimentos significativos em seu sistema de distribuição de alta tensão, implicando em relevante custo global em face das distâncias consideráveis dos principais nós da Rede Básica do Seridó. Na atual situação, portanto, carece a região de uma solução estrutural para fazer frente à crescente demanda de acessantes geradores.

A Força Eólica do Brasil S/A, a PEC Energia S/A, a Renova Energia S.A. e a Brennand Energia, reiteram a situação apresentada pela ENERGISA – SA, acrescentando que nessa região têm cadastrados para o 2º LER/2015, 5 projetos nessa região que representam 144 MW e, ainda, estimativas nas atuais prospecções para mais 329,1 MW num horizonte de 2 anos, e mais 9.717 MW num horizonte de 5 anos, conforme Anexo I.

Estando o núcleo principal dessa região equidistante, de aproximadamente cem quilômetros, dos três nós relevantes da Rede Básica: SE Coremas; SE Campina Grande II e a futura SE Currais Novos II, pedimos vossa #

verificação da viabilidade de ampliação deste sistema, estendendo a Rede Básica ao centro geoelétrico do Seridó Ocidental Paraibano. Solicitam, portanto, estes agentes de distribuição e geração conjuntamente, vossa análise e inserção da referida expansão da rede do SIN, se possível, no próximo ciclo do Programa de Expansão da Transmissão.

Desde já agradecemos e nos colocamos à disposição para quaisquer esclarecimentos.

Atenciosamente,

ENERGISA PARAÍBA:

Jarro Ke Director Tecnico e Comercial

FORÇA EÓLICA DO BRASIL:

Laura Cristina da Fonseca Po Força Eólica do Brasil Diretora de Operações

PEC ENERGIA:

Gibarto Lourenço Feldman Diretor

RG: 30 240.808-3 - SSP/SP

RENOVA ENERGIA: 214 769 638-27

Talita de Oliveira Porto Gerente de Assuntos Regulatónos RG: 41.922.030 - IFP / RJ CPF: 004.850 297-90

Renova Energia S.A.

BRENNAND ENERGIA:

Antonio Perez Duretor de Regulação e Meio Ambienta

C.c. Secretaria de Estado dos Recursos Hídricos, do Meio Ambiente e da Ciência e Tecnologia, do Governo da Paraíba.

ANEXO I

RELAÇÃO DE PROJETOS CADASTRADOS E POTÊNCIAS EM DESENVOLVIMENTO

Projetos Cadastrados nos leilões de 2015:

Projeto Cadastrado	Leilão	Empresa	Empresa Potência Tecnologia		Prefeitura
Chafariz 1	2º LER 2015	Força Eólica do Brasil	30	EOL	Santa Luzia (PB)
Chafariz 2	2º LER 2015	Força Eólica do Brasil	30	EOL	Santa Luzia (PB)
Chafariz 3	2º LER 2015	Força Eólica do Brasil	30	EOL	Santa Luzia (PB)
Chafariz 4	2º LER 2015	Força Eólica do Brasil	26	EOL	Santa Luzia (PB)
Chafariz 5	2º LER 2015	Força Eólica do Brasil	28	EOL	Santa Luzia (PB)
		TOTAL	144		

Estimativa de MW's no horizonte 2016-2017;

Empresa	Potência (MW)	Tecnologia	Prefeitura
Força Eólica do Brasil	138,0	EOL	Santa Luzia (PB)
PEC Energia	191,1*	EOL	Santa Luzia e Junco do Seridó (PB)
TOTAL	329,1	EOL	

^{*} Em licenciamento ambiental juto à SUDEMA.

Estimativa de MW's no horizonte 2016-2020:

Empresa	Potěncia (MW)	Tecnologia	Prefeitura
Força Eólica do Brasil	350,00	EOL	Pedra Lavrada e Seridó (PB)
Força Eólica do Brasil	94,50	EOL	Santa Luzia (PB)
PEC Energia	136,50	EOL	Santa Luzia e São Mamede (PB)
PEC Energia	210,00	EOL	Pedra Lavrada e Nova Palmeira (PB)
Renova Energia S.A.	2.199,00	EOL	Cacimbas e Teixeira (PB) + 15 municípios (PB/PE)
Renova Energia S.A.	5.640,30	EOL	Santa Luzia (PB) + 19 municípios (PB/RN)
Brennand Energia S.A.	1.087,00	EOL	Congo (PB)
TOTA L	9.717,3	EOL	

C.c. Secretaria de Estado dos Recursos Hídricos, do Meio Ambiente e da Ciência e Tecnologia, do Governo da Paraíba.

LOCALIZAÇÃO DOS PROJETOS EM RELAÇÃO À REDE BÁSICA

C.c. Secretaria de Estado dos Recursos Hídricos, do Meio Ambiente e da Ciência e Tecnologia, do Governo da Paraíba.

72

15.2 Consulta à ETN - SE Campina Grande III

EXTREMOZ TRANSMISSORA DO NORDESTE ETN - SA

CE - ETN 0792/2016

Recife, 15 de junho de 2016

At. Sr. José Marcos Bressane

Superintendente de Transmissão de Energia

Empresa de Pesquisa Energética - EPE

Av. Rio Branco, 1 - 11º andar

CEP: 20090-003 Rio de Janeiro/RJ

Assunto: Consulta sobre a viabilidade de expansão da subestação Campina Grande III

Ref.: (a) Ofício nº 0593/EPE/2016 de 18/05/2016

- (b) E-mail da ETN para EPE (Igor Chaves) de 24/05/16 (anexo)
- (c) E-mail da EPE (Igor Chaves) para ETN de 31/05/16 (anexo)
- (d) Desenho ETN CGT-EM-011-A Revisão 0 (anexo)

Prezado Senhor,

Em resposta ao oficio em referência "(a)", atendendo ao solicitado no e-mail em referência "(c)", encaminhamos, anexo a esta carta, o formulário em resposta às informações solicitadas pela EPE, preenchido com as informações quanto à viabilidade da implantação da expansão da SE Campina Grande III, bem como planta de situação em referência "(d)", visando elucidar questões relativas à ampliação desta subestação.

Esclarecemos ainda que, após o recebimento do e-mail em referência "(c)", a EPE (Igor Chaves) orientou a ETN, via audioconferência, que fosse explorada a opção de implantação de: "Utilização do espaço destinado à conexão em 500kV do quarto banco de transformadores 500/230kV para implantação da conexão de uma LT. Neste caso, as duas novas saídas de LTs 500kV seriam implantadas contíguas e orientadas ao sul."

Acrescentamos que a premissa acima foi explorada e contemplada na planta de situação em referência "(d)".

Extremoz Transmissora do Nordeste – ETN SA CNPJ/MF 14.029.911/0001-56

Rua Jacó Velosino, 290 – 3° andar – Casa Forta – CEP 52061-410 Recife – PE / Fone: 81.3040-9696/ Fax: 81.3040-9675

EXTREMOZ TRANSMISSORA DO NORDESTE ETN - SA

CE - ETN 0792/2016

Recife, 15 de junho de 2016

Observa-se que:

- a) a SE fica com disponibilidade de expansão futura de 2 ELs 230 kV;
- b) não há espaço físico para um novo reator de barra de 500 kV; e
- c) a EL Santa Rita II está prevista no lugar do 4º ATR, ficando as ELs Santa Rita II e Santa Luzia II contíguas e orientadas ao sul, sendo a EL Santa Luzia II no vão conjugado com a EL Pau Ferro (futura).

Colocamo-nos a disposição para os esclarecimentos que se fizerem necessários.

Atenciosamente,

José Vieira Almeida Neto Gerente Técnico

STUDO:	Estudo para Escoamento do Potencial Eólico e Fotovoltaico da Região do Seridó
	Estudo de Suprimento à Região Metropolitana de João Pessoa
bestação:	Campina Grande III Concessionária Proprietária: ETN
SPOSTA	ÀS INFORMAÇÕES SOLICITADAS (PREENCHIDA PELA PROPRIETÁRIA DA INSTALAÇÃO)
Módulos d	e Manobra
EL	Quantidade: 2 Tensão (kV): 500 Arranjo: DJM
EL	Quantidade: Tensão (kV): Arranjo:
c1	Quantidade: Tensão Prim/Sec/Ter (kV): Arranjo Prim.: Sec.:
IB	Quantidade: Tensão (kV): Arranjo:
IB	Quantidade: Tensão (kV): Arranjo:
c	CP Quantidade: Tensão (kV): Arranjo:
C	CS Quantidade: Tensão (kV) Arranjo:
CI	RL Quantidade: Tensão (kV): Arranjo:
С	RB Quantidade: Tensão (kV): Arranjo:
c	TA Quantidade: Tensão (kV): Arranjo:
c	C Quantidade: Tensão (kV): Arranjo:
Módulos	de Equipamentos
Tran	nsformadores Quantidade: Potência (MVA): Tensão Prim./Sec./Ter. (kV) Fase:
Auto	otransformadores Quantidade: Potência (MVA): Tensão Prim./Sec./Ter. (kV) Fase:
	otor Quantidade: 8 Potência (MVA): 50 Tensão (kV): 500 Fase: M
Cap	pacitor Shunt Quantidade: Potência (MVA): Fase:
Cap	pacitor Série Quantidade: Potência (MVA): Fase:
Cor	mpensador Estático Quantidade: Potência (MVA): Tensão (kV): Fase:
3. Módulo o	de Insfraestrutura Geral
Há necessi	dade de aquisição de terreno? Sim Área prevista:
	Não Não
4. Outros	idade de edequiação do arranjo? Sim Equipamentos Necessários:
Há necess	Dade de abequação do anante.
	Não
Observaç	ões:
	ica com disponibilidade de expansão futura de 2 ELs 230 kV; b) não há espaço físico para um novo reator de barra de L Santa Rita II está prevista no lugar do 4º ATR, ficando as ELs Santa Rita II e Santa Luzia II contíguas e orientadas s L Santa Rita II está prevista no lugar do 4º ATR, ficando as ELs Santa Rita II e Santa Luzia II contíguas e orientadas s

Data de Entrega do Formulár	io: 15/06/2016	
esponsável pelas Informaç	ões Solicitadas:	
	José Ivan Pereira Filho Diretor	

15.3 Consulta à CHESF - SE Campina Grande II

Empresa de Pesquisa Engreética - EPE

CE-Chesf-SPT- 115/2016

Recife, 19 de outubro de 2016.

EMPRESA DE PESQUISA ENERGÉTICA - EPE RECEBIDO EM

0 3 NOV 2016

AS_36 : 20 H

À Empresa de Pesquisa Energética – EPE At.: José Marcos Bressane Superintendente Transmissão de Energia – STE/DEE/EPE

Assunto: Consulta sobre a viabilidade de expansão da SE Campina Grande II

Ref.: Oficio 1047/EPE/2016, de 26/09/2016

Conforme solicitado no Oficio em referência, estamos encaminhando, em anexo, os formulários de Consulta sobre a Viabilidade de Expansão da SE Campina Grande II, de Propriedade da Chesf, com a finalidade de fornecer subsídios a EPE.

Julgamos importante tecer as seguintes considerações em relação aos dados fornecidos:

- Os dados fornecidos têm como data base a data de emissão desta correspondência. Como é de vosso conhecimento o processo é dinâmico e sujeito a constantes mudanças.
- 2. Os vãos comprometidos, nas nossas informações, são os vãos para os quais efetivamente existem contratos de conexão. Não indicamos como comprometidos aqueles que estão em negociação. Ao longo dos anos ficou evidente que muitas dessas negociações não são concretizadas e uma reserva de vão poderia inibir interessados.

Os v\u00e3os dispon\u00e1veis s\u00e3o aqueles que fisicamente podem ser utilizados por novos acessantes, cabendo ressaltar que não foram observados ou mesmo avaliados os aspectos técnicos associados à conexão. É sempre bom lembrar que a conexão de um novo acessante pode implicar em superação de equipamentos elétricos e componentes como barramento e malha de terra ou até mesmo na impossibilidade física de usar o vão disponível.

Diante dos fatos expostos, ficamos à disposição desta EPE para novas interações, mantendo a política setorial do livre acesso às instalações de transmissão do SIN.

Atenciosamente.

Methodio Varejão de Godoy Assessor da Superintendência de Projetos e Construção de Transmissão

c.c DSE, CRG e Adj. DE Ricardo Melo. (s. anexos)

Formulário de Consulta sobre a Viabilidade de Expansão de Subestações

Data: 26/09/2016
Revisão:
Página: 2 - 3

RESPOSTA ÀS INFORMAÇÕES SOLICITADAS (PREENCHIDA PELA PROPRIETÁRIA DA INSTALAÇÃO)

(X) Assi	inalar os	itens que podem ser implementados na subestação de acordo com o arranjo e espaço disponíveis.
1. Mód	ulos de i	Manobra
	EL	Quantidade:Tensão (kV):Arranjo:
X	СТ	Quantidade: 1 Tensão Prim/Sec/Ter (kV) 230 / 69 Arranjo Prim.: 8ff Sec.: BPT Ter:
	CT	Quantidade:Tensão Prim/Sec/Ter (kV)Arranjo Prim.: Sec.:Ter:
	1B	Quantidade:Tensão (kV):Arranjo:
	CCP	Quantidade:Tensão (kV):Arranjo:
	ccs	Quantidade:Tensão (kV):Arranjo:
	CRL	Quantidade:Tensão (kV):Arranjo:
	CRB	Quantidade:Tensão (kV):Arranjo:
	CTA	Quantidade:Tensão (kV):Arranjo:
	CC	Quantidade:Tensão (kV):Arranjo:
2. Mód	lulos de i	Equipamentos
X	Transf	ormadores Quantidade: 1 Potência (MVA): 100 Tensão Prim./Sec. (kV) 230/69 Fase: 3/
	Transfe	ormadores Quantidade:Potência (MVA):Tensão Prim./Sec. (kV)Fase:
	Autotr	ransformadores Quantidade:Potência (MVA):Tensão Prim./Sec. (kV)Fase:
	Autotr	ransformadores Quantidade:Potência (MVA):Tensão Prim./Sec. (kV)Fase:
	Reator	Quantidade:Potência (Mvar):Tensão (kv):Fase:
	Capaci	itor Shunt Quantidade:Potência (Mvar):Tensão (kV):Fase:
	Capaci	itor Série Quantidade:Potência (Mvar):Tensão (kV):Fase:
	Compe	ensador Estático Quantidade:Potência (Mvar):Tensão (kV):Fase:
3. Móc	dulo de Ir	nfraestrutura Geral
Há nec	essidade	e de aquisição de terreno? Sim Área Prevista:
		Não
4. Out	ros	
Há nec	essidade	e de adequação do arranjo? Sim Equipamentos Necessários:
		Não

9

Formulário de Consulta sobre a Viabilidade de Expansão de Subestações

Data: 26/09/2016

Revisão:

Página: 3 - 3

INFORMAÇÕES ADICIONAIS

5. Observações	
EM RELACE AD QUESTIONAMENTO SOBAG	CAPACIDAD DE CONSUCO DOS
BARNAMENTOS TEMOS:	
1	
1 - OTHINGARD O PLAND DOCEME LOLY (EF	TO , NO CENTALO CANCA POSONA , NÃO
VENIPHONDS VIOLACIO DE CIMITES D	OS BARRAMENIOS 210 EEG SU DA
SUBSTACIS EM CONDICTO MONINE FOM CON	CAINGERLA SIMPLES
2 - CONSIDERANDO O ESGITAMONTO DA T	DANSTERMACT DA SUBSTACT NEW
FOI VENIFICAD VIOLAÇÃ DOS LIMITES	DUS BARMANAUS 230 E 61 AV EM
Condica nominal - ENTRE TARTO CURLING	ancins SIMPLES POWER SUFEMA
TARTO O BARRAMENTO de 230 AU IL	14970 0 ds 65 AV.
Rio de Janeiro, 26 de setembro de 2016	0 x 52 100 02 contract to do
Tito de Janeiro, 20 de Setembro de 2016	ROCIFO, LO DO COTUBO 1016
Data da Solicitação	Data da Entrega do Formulário
1 -	;
J. Frema	
	147
José Marcos Bressane	Assinatura do Responsável pelas Informações Solicitadas
Superintendente de Transmissão de Energia	Nome: FABIO NOPOMINEGUO FRAGA
STE/DEE/EPE	Cargo: GEREWIE DEPS

15.4 Características Elétricas e Parâmetros das Linhas de Transmissão

⇒ <u>Características Elétricas e Parâmetros das Novas Linhas de Transmissão:</u>

Tabela 15-1 – Características Elétricas das Linhas de Transmissão

	Nível de		Extensão	C	ondutor	
Linha de Transmissão	Tensão (kV)	Estrutura	(km)	Número por fase	Nome	Bitola (MCM)
Santa Luzia II – Campina Grande III (C1)	500	AA, CS	126	4	Rail	954
Santa Luzia II – Milagres II (C1)	500	AA, CS	238	4	Rail	954

Tabela 15-2 – Características Elétricas das Linhas de Transmissão

	Parâmetros Elétricos														
Linha de Transmissão	R1	X1	C1	R0	XO	C0	R1	X1	C1	R0	X0	CO	SIL	Cn	Се
Transmissao	Ω/km	Ω/km	nF/km	Ω/km	Ω/km	nF/km	%	%	MVAr	%	%	MVAr	MW	MVA	MVA
S Luzia II – C. Grande III	0,018	0,261	17,1	0,406	1,275	9,3	0,092	1,311	203,1	1,998	6,36	110,6	1239	2716	3395
S Luzia II - Milagres II	0,018	0,261	17,1	0,406	1,275	9,3	0,169	2,448	385,8	3,545	11,69	212,1	1239	2716	3395

16 FICHA PET

Empreendimento:	Estado: PB
LT Santa Luzia II — Campina Grande III	Data de Necessidade: 2021 Prazo de execução: 36 meses

Justificativa:

Escoamento do potencial energético da região do Seridó.

Obras e Investimentos Previstos (R\$ x1000):

Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 126 km	121.385,39
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE Santa Luzia II	9.330,25
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE Santa Luzia II	8.610,40
MIM - 500 kV // SE Santa Luzia II	1.791,48
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE Campina Grande III	17.628,00
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE Campina Grande III	9.330,25
CRL (Conexão de Reator de Linha Fixo) 500 kV // SE Campina Grande III	1.893,43
MIG-A // SE Campina Grande III	1.819,86

Investimentos previstos: 171.789,05

_			~			
	tı	12	cãc	\ at	בוו־	١.
J	ıu	Ja	cac	, aı	.ua	

Observações:

- [1] EPE-DEE-RE-065/2016-rev0, "Estudo para Escoamento do Potencial Energético da Região do Seridó"
- [2] "Base de Referência de Preços ANEEL junho/2015"

Empreendimento: LT Santa Luzia II – Milagres II Data de Necessidade: 2021 Prazo de execução: 36 meses

Justificativa:

Escoamento do potencial energético da região do Seridó.

Obras e Investimentos Previstos (R\$ x1000):

Circuito Simples 500 kV, 4 x 954 MCM (RAIL), 238 km	229.283,51
Reator de Linha Fixo 500 kV, 3 x 33,3 Mvar 1Φ // SE Santa Luzia II	13.221,00
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE Santa Luzia II	9.330,25
CRL (Conexão de Reator de Linha Fixo) 500 kV, Arranjo DJM // SE Santa Luzia II	1.893,43
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE Santa Luzia II	8.610,40
MIM - 500 kV // SE Santa Luzia II	1.791,48
Reator de Linha Fixo 500 kV, (3+1R) x 33,3 Mvar 1Φ // SE Milagres II	17.628,00
EL (Entrada de Linha) 500 kV, Arranjo DJM // SE Milagres II	9.330,25
CRL (Conexão de Reator de Linha Fixo) 500 kV // SE Milagres II	1.893,43
IB (Interligação de Barras) 500 kV, Arranjo DJM // SE Milagres II	8.610,40
MIM - 500 kV // SE Milagres II	1.791,48
MIG-A // SE Milagres II	1.819,86

Investimentos previstos: 305.203,48

Observações:

- [1] EPE-DEE-RE-065/2016-rev0, "Estudo para Escoamento do Potencial Energético da Região do Seridó"
- [2] "Base de Referência de Preços ANEEL junho/2015"

Empreendimento:	Estado: PB	
SE Santa Luzia II	Data de Necessidade: 2021 Prazo de execução: 36 meses	

Justificativa:

Escoamento do potencial energético da região do Seridó.

Obras e Investimentos Previstos (R\$ x1000):

1° е 2° Reator de Barra 500 kV, (6+1R) x 33,3 Mvar 1Ф	30.849,00
IB (Interligação de Barras) 500 kV, Arranjo DJM	8.610,40
2 CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM	15.346,80
MIM - 500 kV	1.791,48
MIG (Terreno Rural)	9.847,82

Investimentos previstos: 66.445,61

Situação	atual:
-	

Observações:

- [1] EPE-DEE-RE-065/2016-rev0, "Estudo para Escoamento do Potencial Energético da Região do Seridó"
- [2] "Base de Referência de Preços ANEEL junho/2015"

Empreendimento:	Estado: CE Data de Necessidade: 2021 Prazo de execução: 36 meses	
SE Milagres II		
Justificativa:		
Escoamento do potencial energético da região do Ser	idó.	
Obras e Investimentos Previstos (R\$ x1000):		
2° Reator de Barra 500 kV, 3 x 33,3 Mvar 1Ф		13.221,00
CRB (Conexão de Reator de Barra) 500 kV, Arranjo DJM		7.673,40

Investimentos previstos: 20.894,40

Situação atual:

Observações:

- [1] EPE-DEE-RE-065/2016-rev0, "Estudo para Escoamento do Potencial Energético da Região do Seridó"
- [2] "Base de Referência de Preços ANEEL junho/2015"

Estado: PB	
Data de Necessidade: 2021 Prazo de execução: 36 meses	

Justificativa:

Atendimento às cargas das distribuidoras Energisa.

Obras e Investimentos Previstos (R\$ x1000):

4° TR 230-69 kV, 100 Mvar 3Φ	7.676,47
CT (Conexão de Transformador) 230 kV, Arranjo BPT	2.961,24
CT (Conexão de Transformador) 69 kV, Arranjo BPT	1.263,52

Investimentos previstos: 11.901,23

Sil	tuação	atual	•
JI	tuuguo	utuu	•

Observações:

- [1] EPE-DEE-RE-065/2016-rev0, "Estudo para Escoamento do Potencial Energético da Região do Seridó"
- [2] "Base de Referência de Preços ANEEL junho/2015"

17 TABELAS DE COMPARAÇÃO R1 X R2

ANÁLISE CRÍTICA DO RELATÓRIO R2 Empreendimento: LT 500kV Santa Luzia II — Campina Grande III C1				
Característica da Instalação	Recomendações R1	Considerações R2	Justificativas em Caso de Alterações no R2	
Comprimento do circuito (km)	126			
Condutor utilizado (tipo e número por fase)	Rail – 4x954 MCM			
Capacidade operativa de longa duração (A)	3092			
Capacidade operativa de curta duração (A)	3895			
Resistência de sequência positiva, 60 Hz, (Ω/km)	0,018			
Reatância, 60 Hz (Ω/km)	0,261			
Susceptância, 60 Hz (nF/km)	17,1			
Cenário utilizado no cálculo do equivalente de rede				
Fluxo máximo na linha considerado no estudo (MVA)	712,5 - normal 475,8 - emergência			
OBSERVAÇÕES				

ANÁLISE CRÍTICA DO RELATÓRIO R2 Empreendimento: LT 500kV Santa Luzia II — Milagres II C1				
Característica da Instalação	Recomendações R1	Considerações R2	Justificativas em Caso de Alterações no R2	
Comprimento do circuito (km)	238			
Condutor utilizado (tipo e número por fase)	Rail – 4x954 MCM			
Capacidade operativa de longa duração (A)	3092			
Capacidade operativa de curta duração (A)	3895			
Resistência de sequência positiva, 60 Hz, (Ω/km)	0,018			
Reatância, 60 Hz (Ω/km)	0,261			
Susceptância, 60 Hz (nF/km)	17,1			
Cenário utilizado no cálculo do equivalente de rede				
Fluxo máximo na linha considerado no estudo (MVA)	666,5 - normal 483,3 - emergência			
OBSERVAÇÕES				

Série

MEIO AMBIENTE: TRANSMISSÃO

NOTA TÉCNICA DEA 31/16

Análise socioambiental do estudo para escoamento dos potenciais eólicos e fotovoltaicos da Região do Seridó (Relatório R1)

Rio de Janeiro Outubro de 2016

Série MEIO AMBIENTE: TRANSMISSÃO

NOTA TÉCNICA DEA 31/16
Análise socioambiental do estudo para escoamento dos potenciais eólicos e fotovoltaicos da Região do Seridó (Relatório R1)

Ministério de Minas e Energia

Ministro

Fernando Bezerra Coelho Filho

Secretário Executivo

Paulo Jerônimo Bandeira de Mello Pedrosa

Secretário de Planejamento e Desenvolvimento Energético

Eduardo Azevedo Rodrigues

Empresa pública, vinculada ao Ministério de Minas e Energia, instituída nos termos da Lei n° 10.847, de 15 de março de 2004, a EPE tem por finalidade prestar serviços na área de estudos e pesquisas destinadas a subsidiar o planejamento do setor energético, tais como energia elétrica, petróleo e gás natural e seus derivados, carvão mineral, fontes energéticas renováveis e eficiência energética, dentre outras.

Presidente

Luiz Augusto Nobrega Barroso

Diretor de Estudos Econômico-Energéticos e Ambientais

Ricardo Gorini de Oliveira

Diretor de Estudos de Energia Elétrica

Amilcar Guerreiro

Diretor de Estudos de Petróleo, Gás e Biocombustível

Gelson Baptista Serva

Diretor de Gestão Corporativa

Álvaro Henrique Matias Pereira

Coordenação Geral

Luiz Augusto Nobrega Barroso Ricardo Gorini de Oliveira

Coordenação Executiva

Isaura Frega

Equipe Técnica

Alfredo Lima Silva André Cassino Ferreira Kátia Gisele Matosinho (coordenação técnica)

URL: http://www.epe.gov.br

Sede

SCN – Quadra 1 – Bloco C № 85 – Salas 1712/1714 Edifício Brasília Trade Center 70711-902 - Brasília – DF Escritório Central

Av. Rio Branco, nº 01 – 11º Andar 20090-003 - Rio de Janeiro – RJ

Série

MEIO AMBIENTE: TRANSMISSÃO

NOTA TÉCNICA DEA 31/16

Análise socioambiental do estudo para escoamento dos potenciais eólicos e fotovoltaicos da Região do Seridó (Relatório R1)

SUMÁRIO

SIGLÁRIO	_ 2
INTRODUÇÃO	_ 4
PROCEDIMENTOS ADOTADOS	_ 6
2.1. PROCEDIMENTOS PARA LOCALIZAÇÃO DAS SUBESTAÇÕES E DOS CORREDORES DE LINHAS DE TRANSMISSÃO	6
2.2. BASE DE DADOS UTILIZADA	6
LOCALIZAÇÃO DA ÁREA EM ESTUDO	_ 8
DESCRIÇÃO DOS CORREDORES	11
LOCALIZAÇÃO DAS SUBESTAÇÕES	11
1.1.1 SE Santa Luzia II	11
Descrição dos Corredores	14
1.1.2 Corredor SE Santa Luzia II - SE Campina Grande III	14
1.1.3 Corredor SE Santa Luzia II - SE Milagres II	24
REFERÊNCIAS BIBLIOGRÁFICAS	33
APÊNDICE A – TABELA DE COMPARAÇÃO DA SE SANTA LUZIA II (525/230 KV)	35
APÊNDICE B – TABELA DE COMPARAÇÃO DA LT 500 KV SANTA LUZIA II – CAMPINA GRANDE III	36
APÊNDICE C – TARELA DE COMPARAÇÃO DA 1T 500 KV SANTA LUZIA II – MILAGRES II	38

SIGLÁRIO

Aneel	Agência Nacional de Energia Elétrica
APA	Área de Proteção Ambiental
APCB	Área Prioritária para Conservação da Biodiversidade
Aster	Advanced Spaceborne Thermal Emission and Reflection Radiometer
CD	Circuito Duplo
CS	Circuito Simples
Cecav	Centro Nacional de Pesquisa e Conservação de Cavernas
Conama	Conselho Nacional do Meio Ambiente
Dnocs	Departamento Nacional de Obras Contra as Secas
DNPM	Departamento Nacional de Produção Mineral
EIA	Estudo de Impacto Ambiental
Eletrobras	Centrais Elétricas Brasileiras SA
Esec	Estação Ecológica
EPE	Empresa de Pesquisa Energética
FCP	Fundação Cultural Palmares
Funai	Fundação Nacional do Índio
Ibama	Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis
IBGE	Instituto Brasileiro de Geografia e Estatística
Inpe	Instituto Nacional de Pesquisas Espaciais
ICMBio	Instituto Chico Mendes de Conservação da Biodiversidade
Iphan	Instituto do Patrimônio Histórico e Artístico Nacional
Incra	Instituto Nacional de Colonização e Reforma Agrária
LT	Linha de Transmissão
MMA	Ministério do Meio Ambiente
NT	Nota Técnica
PA	Projeto de Assentamento Rural
Parest	Parque Estadual
Parna	Parque Nacional
PI	Proteção Integral
RPPN	Reserva Particular do Patrimônio Natural
SE	Subestação
SIG	Sistema de Informação Geográfica
SIN	Sistema Interligado Nacional

Snuc	Sistema Nacional de Unidades de Conservação
SRTM	Shuttle Radar Topography Mission
STE	Superintendência de Transmissão de Energia da EPE
Suplan	Superintendência de Obras do Plano de Desenvolvimento do Estado da Paraíba
TI	Terra Indígena
TQ	Terra Quilombola
UC	Unidade de Conservação
US	Uso Sustentável
USGS	United States Geological Survey

INTRODUÇÃO

O presente estudo abrange áreas localizadas nos estados da Paraíba, Ceará e pequeno trecho no Rio Grande do Norte, e tem como objetivo promover o escoamento dos potencias eólicos e fotovoltaicos da região do Seridó. Sendo assim, a Superintendência de Transmissão de Energia (STE) da Empresa de Pesquisa Energética (EPE) identificou a necessidade de implantação de duas Linhas de Transmissão (LTs) e uma nova SE.

Esta Nota Técnica (NT) apresenta a análise dos aspectos socioambientais do conjunto de empreendimentos que constituem a alternativa de transmissão selecionada. A seguir são apresentados os empreendimentos planejados e contemplados nesse estudo (Tabela 1 e Tabela 2).

Tabela 1 – Linhas de Transmissão planejadas no estudo

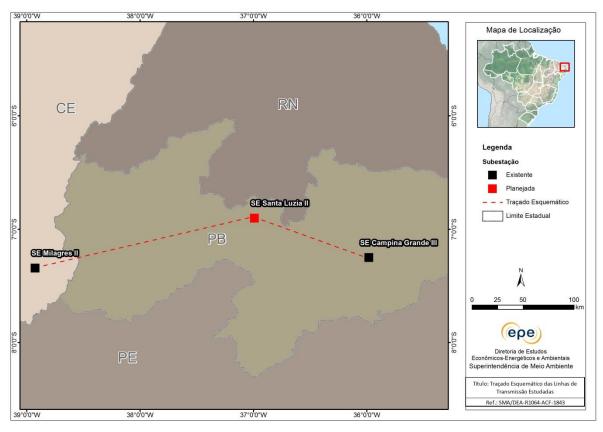

LT planejada	N° de circuitos	Tensão	Extensão (km)
SE Santa Luzia II – SE Campina Grande III	1	500 kV	124
SE Santa Luzia II – SE Milagres II	1	500 kV	222

Tabela 2 - Subestação planejada no estudo

Subestação planejada	Município-UF
Santa Luzia II	Santa Luzia-PB

A Figura 1 apresenta os traçados esquemáticos das LTs planejadas, assim como a localização proposta para a futura SE Santa Luzia II.

(Fonte: IBGE, 2009)

Figura 1 - Traçado esquemático das Linhas de Transmissão estudadas

A estrutura deste relatório contempla: procedimentos utilizados na análise socioambiental (item 2); caracterização da região que engloba as interligações elétricas (item 3); análise individual da SE planejada e dos corredores de LTs da alternativa selecionada, com as respectivas recomendações para o Relatório R3 (item 4); e, ao final, nos apêndices, fichas de verificação a serem apresentadas nos relatórios R3, relativas às recomendações ora apresentadas.

PROCEDIMENTOS ADOTADOS

2.1. Procedimentos para localização das subestações e dos corredores de Linhas de Transmissão

Para definição da localização da SE e dos corredores foram utilizadas as imagens de satélite disponíveis no *software Google Earth Pro* e bases cartográficas dos temas mais relevantes do ponto de vista socioambiental.

Primeiramente, foi identificada a área promissora para a instalação da SE planejada. Para a definição dessa área considerou-se a proximidade com a área de expansão de geração eólica e fotovoltaica da região do Seridó (indicada pela Superintendência de Transmissão de Energia da EPE), a existência de acessos, o arranjo de LTs associadas e a interferência em áreas sensíveis do ponto de vista socioambiental.

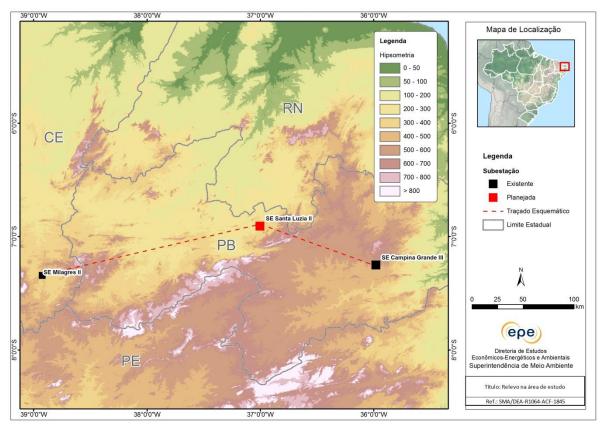
A partir de então, foram avaliadas alternativas de corredores com largura de 10 km para as interligações entre as SEs. Essas informações foram tratadas em ambiente de Sistema de Informação Geográfica (SIG), utilizando-se o *software* ArcGIS 10.4.

Ao traçar os corredores, procurou-se desviá-los das áreas com maior sensibilidade socioambiental, como Unidades de Conservação (UC), Terras Indígenas (TI), Territórios Quilombolas (TQ), áreas com vegetação nativa, cavernas, Áreas Prioritárias para Conservação da Biodiversidade (APCB), Projetos de Assentamentos Rurais (PA) e áreas urbanas. Além disso, buscou-se proximidade com rodovias, com objetivo de reduzir a abertura de vias de acesso.

A caracterização de cada corredor é apresentada por trechos, sendo apontadas as principais interferências socioambientais e destacados os motivadores dos caminhamentos. A descrição é apoiada por figuras com indicação dos temas relevantes (uso do solo, aspectos socioambientais e outros) das áreas estudadas, elaboradas a partir de imagens de satélite disponíveis no *Google Earth Pro, e* por mapas temáticos de infraestrutura, das características físicas da região e dos principais temas socioambientais.

2.2. Base de Dados utilizada

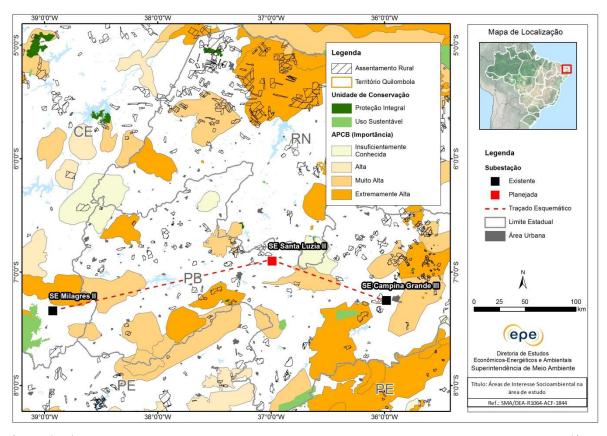
Para delimitação dos corredores e da área proposta para a subestação, e para elaboração das figuras e tabelas, foram consultadas e/ou utilizadas informações das seguintes bases de dados:



- Advanced Spaceborne Thermal Emission and Reflection Radiometer Aster (USGS, 2012);
- Base Cartográfica Integrada do Brasil ao Milionésimo Digital, incluindo hidrografia divisão territorial e sistema viário (IBGE, 2009);
- Mapa das Áreas Prioritárias para a Conservação, Uso Sustentável e Repartição de Benefícios da Biodiversidade Brasileira (MMA, 2007);
- Mapa de Ocorrência de Cavernas (Cecav, 2015);
- Mapa de Processos Minerários (DNPM, 2016);
- Mapa de Projetos de Assentamento (Incra, 2016a);
- Mapa de Reserva Particular do Patrimônio Natural (ICMBio, 2016);
- Mapa de Terras Indígenas (Funai, 2016);
- Mapa de Territórios Quilombolas (Incra, 2016b);
- Mapa de Unidades de Conservação Federais e Estaduais (MMA, 2016; Eletrobras, 2011).
- Mapa de Grau de Potencialidade de Ocorrência de Cavernas (ICMBio, 2012).

LOCALIZAÇÃO DA ÁREA EM ESTUDO

A área em estudo situa-se integralmente inserida no bioma Caatinga e abrange os estados da Paraíba, Ceará e pequeno trecho do Rio Grande do Norte. O relevo caracteriza-se por grandes extensões de áreas aplainadas, com presença pontual de regiões mais acidentadas, em especial nas proximidades dos limites estaduais entre Paraíba e Rio Grande do Norte e Paraíba e Ceará. Entre a SE Santa Luzia II e a SE Campina Grande III destaca-se a presença do Planalto da Borborema, onde são registradas altitudes mais elevadas (Figura 2).



(Fonte: IBGE, 2009; SRTM, 2012)

Figura 2 - Relevo na área em estudo

Como pode ser observado na Figura 3, na área de estudo há grande quantidade de projetos de assentamentos rurais. Nota-se também a existência de Áreas Prioritárias para a Conservação da Biodiversidade (APCBs) entre as subestações a serem interligadas. Conforme base de dados consultada, não há terras indígenas registradas na região analisada e apenas uma unidade de conservação (RPPN Fazenda Tamanduá) é abrangida pelos corredores estudados.

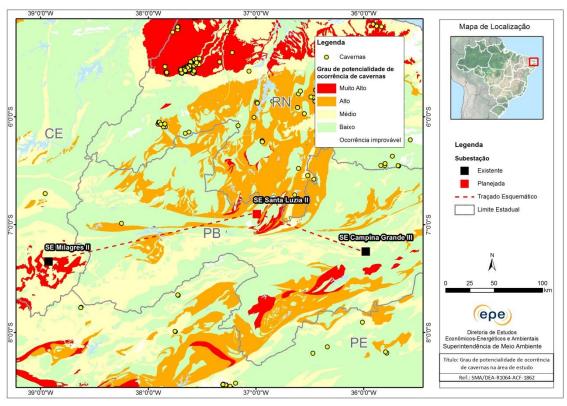
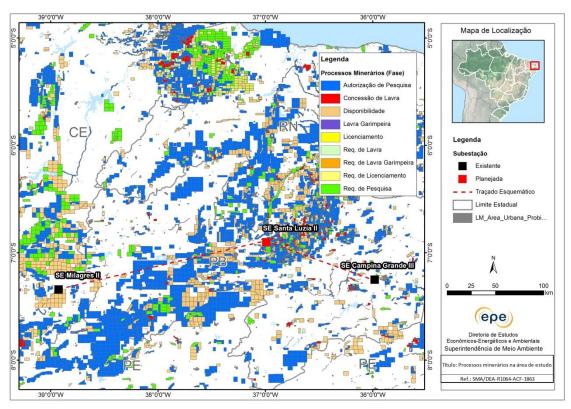

(Fonte: Eletrobras, 2011; IBGE, 2009; MMA, 2007; MMA, 2016; Cecav, 2016; Funai, 2016; ICMBio, 2016; Incra, 2016a; Incra, 2016b)

Figura 3 – Áreas de interesse socioambiental na área em estudo

Cabe destacar que, embora na base consultada não exista registro de cavernas nas áreas entre as subestações, há locais com graus de potencialidade de ocorrência de cavernas elevados, em especial nas adjacências da SE Milagres II e da SE Santa Luzia II (Figura 4).


A região estudada apresenta grande quantidade de processos minerários, majoritariamente nas fases de autorização de pesquisa e disponibilidade (Figura 5). No item de descrição dos corredores (0) são fornecidas informações sobre os processos minerários existentes.

(Fonte: Cecav, 2014)

Figura 4 - Grau de potencialidade de ocorrência de cavernas na área em estudo

(Fonte: IBGE, 2009; DNPM, 2016)

Figura 5 – Processos minerários na área em estudo

DESCRIÇÃO DOS CORREDORES

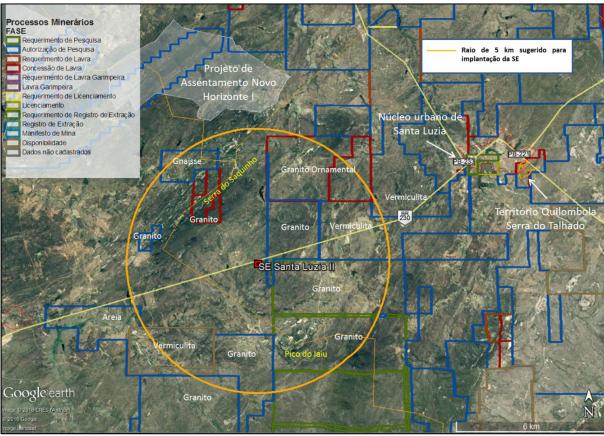
Localização das subestações

O presente estudo envolve três subestações, duas existentes e uma planejada. A Tabela 3 apresenta a localização das subestações que compõem o estudo.

Tabela 3 - Coordenadas das subestações

Cubocho a a	C:tura = ~ -	Coorde	nadas ¹	B.G. mieśnie	Fatoda
Subestação	Situação -	Latitude	Longitude	- Município	Estado
Campina Grande III	Existente	7° 15' 09" S	35° 58' 46" O	Campina Grande	Paraíba
Milagres II	Existente	7° 20' 40" S	38° 55' 29 "O	Milagres	Ceará
Santa Luzia II	Planejada	6° 54' 32" S	37° 00' 08" O	Santa Luzia	Paraíba

¹As coordenadas das subestações planejadas referem-se ao ponto central de uma área circular indicada para aprofundamento dos estudos no Relatório R3


A seguir, é apresentada a área referencial para a SE planejada, que deverá ser detalhada no relatório R3, de forma a subsidiar a indicação da melhor localização para esse empreendimento.

1.1.1 SE Santa Luzia II

Para definição do local da SE Santa Luzia II (500/230 kV), buscou-se a proximidade das áreas de expansão de geração eólica e fotovoltaica da região do Seridó. Outros fatores considerados foram a existência de estradas e a minimização da interferência com polígonos de processos minerários e outras áreas sensíveis do ponto de vista socioambiental.

Assim, para implantação da SE Santa Luzia II, sugere-se avaliar in loco, quando da elaboração do Relatório R3, uma área com raio de 5 km no entorno do ponto com as seguintes coordenadas geográficas: 6° 54′ 32,72″ S e 37° 00′ 08,07″ O (Figura 6).

(Fonte: Google Earth Pro; DNPM, 2016; INCRA, 2016)

Figura 6 – Localização sugerida para a SE Santa Luzia II e aspectos socioambientais relevantes

Existem 18 processos minerários no perímetro sugerido para implantação da SE, estando a maior parte destes (50%) na fase de autorização de pesquisa. Os cinco processos que estão na fase de concessão de lavra referem-se à extração de granito e situam-se na parte norte do perímetro (Figura 6). A seguir são apresentadas informações sobre os processos, de acordo com o DNPM (Tabela 4).

Tabela 4 – Processos minerários que possuem interferência com o raio sugerido para implantação da SE Santa Luzia II

Processo	Ano	Substância	Fase	Uso
846349/2013	2013	Areia	Autorização de Pesquisa	Construção Civil
846318/2014	2014	Gnaisse	Autorização de Pesquisa	Revestimento
846972/1995	1995	Granito	Autorização de Pesquisa	Não Informado
846169/2013	2013	Granito	Autorização de Pesquisa	Revestimento
846353/2013	2013	Granito	Autorização de Pesquisa	Revestimento
846005/1996	1996	Granito	Autorização de Pesquisa	Não Informado
846973/1995	1995	Granito	Concessão de Lavra	Não Informado
846313/2003	2003	Granito	Concessão de Lavra	Revestimento
846313/2003	2003	Granito	Concessão de Lavra	Revestimento
846048/1994	1994	Granito	Requerimento de Pesquisa	Não Informado
846050/1994	1994	Granito	Requerimento de Pesquisa	Não Informado

Processo	Ano	Substância	Fase	Uso
846051/1994	1994	Granito	Requerimento de Pesquisa	Não Informado
846226/2002	2002	Granito Ornamental	Concessão de Lavra	Construção Civil
846226/2002	2002	Granito Ornamental	Concessão de Lavra	Construção Civil
846514/2012	2012	Vermiculita	Autorização de Pesquisa	Industrial
846158/2014	2014	Vermiculita	Autorização de Pesquisa	Industrial
846118/2015	2015	Vermiculita	Autorização de Pesquisa	Industrial
846065/2012	2012	Vermiculita	Disponibilidade	Industrial

A área de avaliação para implantação da SE abrange regiões rurais dos municípios de Santa Luzia, São Mamede e um pequeno trecho de Várzea. Tais municípios pertencem à mesorregião Borborema e à microrregião Seridó Ocidental Paraibano.

A área proposta possui boa acessibilidade, sendo atravessada pela rodovia federal BR-230. A região apresenta grandes extensões de relevo aplainado e abriga vegetação típica do bioma Caatinga, aberta e de baixo porte. Destacam-se na paisagem a Serra do Saquinho e o Pico do laiu, situados, respectivamente, nos setores norte e sul do perímetro sugerido para instalação da SE (Figura 6 e Figura 7).

Figura 7 – Vegetação típica do bioma Caatinga, relevo aplainado e, ao fundo, o Pico do Iaiu, formação rochosa em forma de inselberg, visto a partir da rodovia BR-230

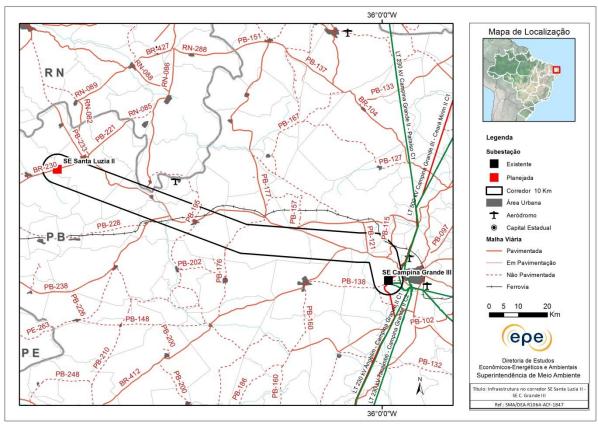
Recomendações para o Relatório R3

A circunferência sugerida para a localização da SE Santa Luzia II não apresenta grandes complexidades socioambientais, contudo algumas recomendações são necessárias para melhor definição da localização da subestação.

- Afastar o ponto sugerido para a implantação da subestação das áreas com processos minerários ativos, em especial os que estão em fase de concessão de lavra, e buscar junto ao DNPM por possíveis atualizações nos processos existentes;
- Evitar posicionar a subestação nas proximidades da Serra do Saquinho e do Pico do laiu, já que trata-se de áreas com potencial turístico e paisagístico.

Descrição dos Corredores

Os itens seguintes apresentam a descrição dos corredores em estudo referentes às LTs planejadas no presente estudo, para os quais foram elaborados mapas e figuras com as principais características socioambientais. Para definição dos traçados foram adotados os procedimentos destacados no item 0 desta Nota Técnica.


1.1.2 Corredor SE Santa Luzia II - SE Campina Grande III

O corredor SE Santa Luzia II - SE Campina Grande III, com 10 km de largura e eixo de 124 km de extensão, situa-se integralmente no bioma Caatinga, interceptando áreas com remanescente de vegetação nativa. A interligação será realizada a partir de um circuito simples de 500 kV.

O principal norteador para estabelecimento do caminhamento do corredor foi a minimização da interferência com os projetos de assentamento existentes na região, em especial nas proximidades da SE Campina Grande III.

O corredor possui boa acessibilidade, atravessando a BR-230, estradas estaduais, uma ferrovia, além de vias não pavimentadas (Figura 8).

(Fonte: IBGE, 2009)

Figura 8 – Infraestrutura no Corredor SE Santa Luzia II - SE Campina Grande III

As coordenadas das subestações do corredor SE Santa Luzia II - SE Campina Grande III são apresentadas na Tabela 5.

Tabela 5 - Coordenadas das subestações do corredor SE Santa Luzia II - SE Campina Grande III

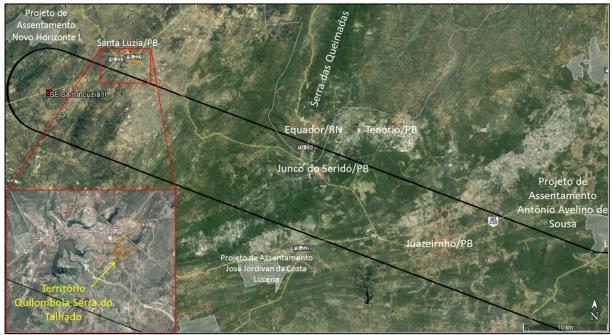
Subostação	Status	Coordenadas ¹		Município	Estado
Subestação	Status	Latitude	Longitude	Withincipio	ESTAGO
Santa Luzia II	Planejada	6° 54' 32" S	37° 00' 08" O	Santa Luzia	РВ
Campina Grande III	Existente	7° 15' 09" S	35° 58' 46" O	Campina Grande	РВ

¹As coordenadas da subestação planejada refere-se ao ponto central de uma área circular indicada para aprofundamento dos estudos no Relatório R3

O corredor selecionado atravessa 16 municípios, sendo 15 do estado da Paraíba e 1 do Rio Grande do Norte (Tabela 6).

Tabela 6 - Municípios atravessados pelo corredor SE Santa Luzia II - SE Campina Grande III

UF	Mesorregião	Microrregião	Município
PB	Dorhoroma	Seridó Ocidental Paraibano –	Várzea
rD	Borborema	Seriuo Ociuental Paraibano –	Santa Luzia


UF	Mesorregião	Microrregião	Município
			São Mamede
			Junco do Seridó
			Salgadinho
		Caridé Oriental Parcibara	Tenório
		Seridó Oriental Paraibano	Juazeirinho
		Cariri Oriental	Assunção
-			Soledade
		Curimataú Ocidental	Olivedos
			Pocinhos
	Agreste Paraibano		Boa Vista
			Puxinanã
		Campina Grande	Campina Grande
		·	Queimadas
RN	Central Potiguar	Seridó Oriental	Equador

A seguir são relacionados os principais motivadores de desvios do corredor, com base na descrição das principais características socioambientais da região. Para esta descrição, o corredor foi dividido em dois trechos, denominados setor oeste e leste.

No setor oeste, partindo da área proposta para a SE planejada Santa Luzia II, o corredor segue na direção sudeste, de forma a evitar interferência com a Serra das Queimadas, que apresenta elevado grau de preservação (Figura 9). Essa orientação de caminhamento também foi estabelecida para que o corredor não realizasse travessia com o projeto de assentamento Antônio Avelino de Sousa, situado junto ao núcleo urbano no município de Soledade/PB. O corredor atravessa regiões com presença de vegetação nativa e cruza os núcleos urbanos dos municípios de Juncó do Seridó e Juazeirinho.

Adjacente ao município de Santa Luzia, porém na área externa do corredor, observa-se a presença do Território Quilombola Serra do Talhado (Figura 9).

(Fonte: Google Earth Pro; INCRA, 2016)

Figura 9 – Características socioambientais de destaque no setor oeste do corredor SE Santa Luzia II
- SE Campina Grande III

Nas proximidades da SE planejada Santa Luzia II nota-se a presença de relevo marcadamente acidentado, conforme observado na Figura 10Erro! Fonte de referência não encontrada. Nesta região são encontradas formações rochosas do tipo inselberg, tal como o Pico do Iaiu, como mencionado no item 1.1.1 deste relatório. Destaca-se o potencial paisagístico e turístico deste trecho do corredor, que alia a presença das serras e inselbergs com trechos de elevado grau de conservação.

(Fonte: Google Earth Pro; INCRA, 2016)

Figura 10 - Relevo acidentado no extremo oeste do corredor

No setor leste do corredor, o principal norteador do caminhamento foi a presença do projeto de assentamento José Antônio Eufrouzino. Para minimizar a interferência com este projeto de assentamento, na saída da SE Campina Grande III o corredor segue no sentido norte para, em seguida, seguir na direção oeste. Como pode ser observado na Figura 11, neste trecho nota-se a existência de pequenas propriedades rurais nas adjacências da SE Campina Grande III.

(Fonte: Google Earth Pro; INCRA, 2016)

Figura 11 – Características socioambientais de destaque no setor leste do corredor SE Santa Luzia II
- SE Campina Grande III

Cabe destacar que na área do corredor, especialmente no setor oeste, observa-se a presença de pequenos e médios açudes.

De acordo com informações do Plano Diretor do município de Campina Grande, o corredor proposto intercepta trecho de zona de expansão urbana e duas zonas especiais de interesse ambiental (Figura 12 e Figura 13 – Zonas definidas no Plano Diretor de Campina Grande/PB), porém com possibilidade de desvio pelo traçado da futura LT.

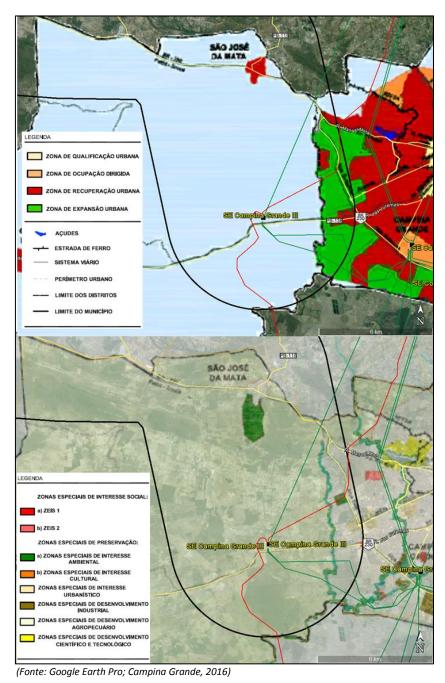
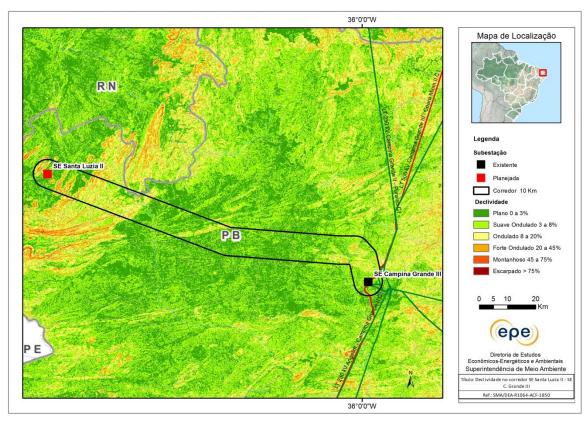
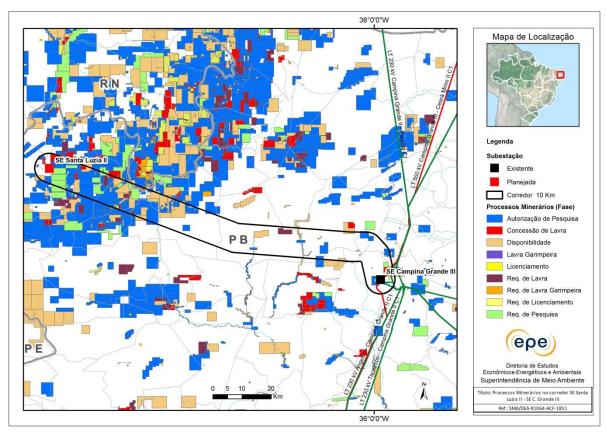



Figura 12 e Figura 13 – Zonas definidas no Plano Diretor de Campina Grande/PB no extremo leste do corredor

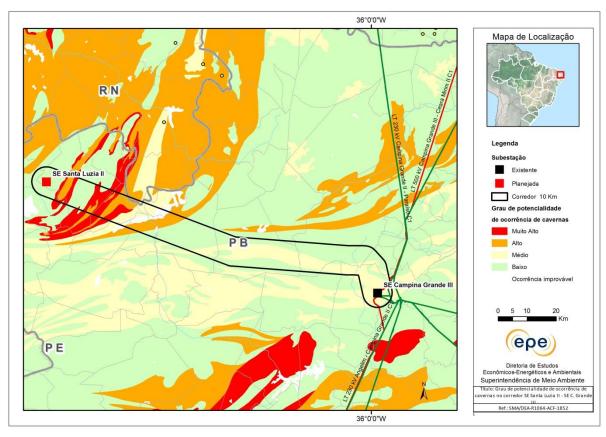
O corredor estudado atravessa o Planalto da Borborema. No extremo oeste são registradas cotas altimétricas que variam de 250 a 400 metros. Na altura do município de Equador/RN, o corredor atravessa região próxima à Serra das Queimadas, local onde são encontradas altitudes superiores a 700 metros. Deste ponto até o extremo leste do corredor predominam cotas na faixa entre 400 e 650 metros. Conforme demonstrado na Figura 14, na região do corredor há predominância de relevo plano (0 a 3%), suave ondulado (3 a 8%) e ondulado (8 a 20%), com existência de áreas mais acidentadas próximo à SE Santa Luzia II e nas proximidades do limite entre os estados da Paraíba e Rio Grande do Norte.



(Fonte: CPRM, 2010)

Figura 14 - Declividade no corredor SE Santa Luzia II - SE Campina Grande III

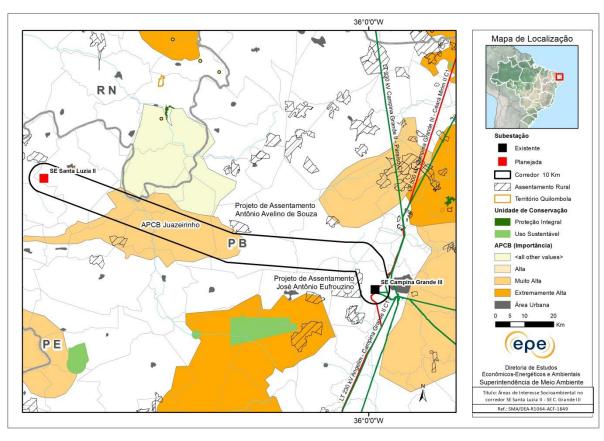
A região do corredor possui grande quantidade de processos minerários, especialmente em seu setor oeste (Figura 15). De acordo com dados do DNPM, há 216 processos que possuem sobreposição com o corredor, sendo as substâncias mais representativas o caulim (17%), o granito (17%) e o minério de tântalo (11%). A maioria dos processos (44%) encontra-se na fase de autorização de pesquisa. Dentre os 16 processos na fase de concessão de lavra, a maior parte (50%) refere-se à extração de granito e concentra-se no extremo oeste do corredor.



(Fonte: DNPM, 2016; IBGE, 2009)

Figura 15 – Processos minerários no corredor SE Santa Luzia II - SE Campina Grande III

De acordo com a base de dados consultada, na área do corredor não há registro de terras indígenas, unidades de conservação ou cavernas. Importante mencionar que são atravessadas regiões com elevado potencial de ocorrência de cavernas, em especial no setor oeste do corredor (Figura 16).



(Fonte: Cecav, 2014; IBGE, 2009)

Figura 16 – Grau de potencialidade de ocorrência de cavernas no corredor SE Santa Luzia II - SE Campina Grande III

Como pode ser observado na Figura 17, o corredor atravessa a APCB Juazeirinho, de importância muito alta e com ação prioritária de recuperação. Como já mencionado, próximo à SE Campina Grande III o corredor intercepta o projeto de assentamento José Antônio Eufrouzino, porém com possibilidade de desvio pela futura LT.

(Fonte: DNPM, 2016; Eletrobras, 2011; IBGE, 2009; Incra, 2015; MMA, 2007; MMA, 2016)

Figura 17 – Áreas de interesse socioambiental no corredor SE Santa Luzia II - SE Campina Grande III

Conforme dados do Iphan (2016) há 39 sítios arqueológicos cadastrados nos municípios atravessados pelo corredor (Tabela 7). Em função da indisponibilidade de informações georreferenciadas destes sítios, não há como indicar se os mesmos estão ou não inseridos na área do corredor, sendo necessário levantamento das localidades na fase do relatório R3.

Tabela 7 – Número de sítios arqueológicos registrados nos municípios atravessados pelo corredor SE Santa Luzia II - SE Campina Grande III

Estado	Município	Número de sítios arqueológicos registrados
	Várzea	3
	Santa Luzia	3
	São Mamede	13
PB	Junco do Seridó	1
РВ	Queimadas	8
	Olivedos	2
	Boa Vista	4
	Campina Grande	4
RN	Equador	1
TOTAL		39

De acordo com a base de dados da Fundação Cultural Palmares (2016), existem três Territórios Quilombolas (TQs) certificados nos municípios interceptados pelo corredor. Um destes, o TQ Serra do Talhado, situado no município de Santa Luzia, encontra-se fora da área

do corredor (Figura 9). Em relação aos demais, não há informações georreferenciadas, demandando uma avaliação detalhada na fase do relatório R3 (Tabela 8).

Tabela 8 – Territórios Quilombolas certificados nos municípios atravessados pelo corredor SE Santa Luzia II - SE Campina Grande III

Município	Estado	Nome do Território Quilombola	
Santa Luzia		Comunidade da Serra do Talhado	
Santa Luzia	PB	Serra do Talhado	
Várzea		Pitombeira	

Recomendações para o Relatório R3

A seguir, são apresentadas as recomendações para a definição da diretriz da LT 500 kV SE Santa Luzia II - SE Campina Grande III C1:

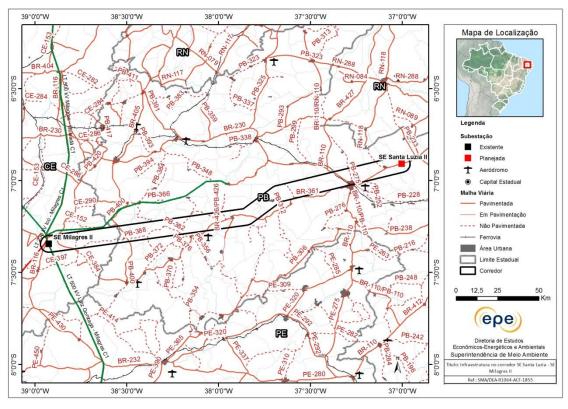
- Evitar interferência direta com o Projeto de Assentamento José Antônio Eufrouzino, situado no município de Campina Grande/PB;
- Evitar interferência direta com as duas zonas especiais de interesse ambiental definidas no Plano Diretor do município de Campina Grande/PB;
- Avaliar a existência de cavernas, em especial no trecho oeste do corredor;
- Avaliar a situação dos processos minerários situados na área do corredor e possíveis interferências impeditivas para passagem da futura LT;
- Evitar interferência direta com o Território Quilombola Serra do Talhado, localizado no município de Santa Luzia/PB;
- Atentar para a presença de 39 sítios arqueológicos cadastrados pelo Iphan e 2 territórios quilombolas registrados pela Fundação Cultural Palmares nos municípios atravessados pelo corredor, buscando localizar tais áreas e evitar proximidade.

1.1.3 Corredor SE Santa Luzia II - SE Milagres II

O corredor SE Milagres II - SE Santa Luzia II, com 10 km de largura e eixo de 222 km de extensão, foi delineado para contemplar uma interligação com tensão de 500 kV em um circuito simples.

As coordenadas geográficas das subestações do corredor são apresentadas na Tabela 9.

Tabela 9 - Coordenadas das subestações do corredor SE Santa Luzia II - SE Milagres II


Subastasão	Status	Coord	enadas ¹	- Município	Fatada
Subestação	Status -	Latitude	Longitude	- iviunicipio	Estado
Santa Luzia II	Planejada	6°54'32"S	37° 00'08"O	Santa Luzia	PB

Subostação	Status	Coord	Coordenadas ¹		Estado
Subestação	Status	Latitude	Longitude	Município Estado	
Milagres II	Existente	7° 20' 40" S	38° 55' 29 "O	Milagres	CE

¹As coordenadas das subestações planejadas referem-se ao ponto central de uma área circular indicada para aprofundamento dos estudos no Relatório R3

A Figura 18 apresenta o corredor em estudo, a infraestrutura disponível, os municípios e estados atravessados.

(Fonte: IBGE, 2009)

Figura 18 – Infraestrutura e municípios no corredor SE Santa Luzia II – SE Milagres II

O corredor está totalmente inserido no bioma Caatinga e abrange áreas onde o uso e ocupação do solo se divide entre agropecuária e vegetação nativa da fitofisionomia savana estépica. Atravessa dois municípios no estado do Ceará e 20 municípios no estado da Paraíba e faz duas inflexões, delineadas para desviar dos açudes Coremas e Mãe-d'água, e de um conjunto de projetos de assentamento do Incra, principalmente os localizados no município de Catingueiras. A Tabela 10 apresenta os municípios atravessados e a respectiva microrregião, mesorregião e unidade federativa a qual pertencem.

Tabela 10 – Municípios atravessados pelo corredor SE Milagres II – SE Santa Luzia II

UF	Mesorregião	Microrregião	Município		
CE	Cr. Coorono	Barro	Mauriti		
CE	Sul Cearense –	Brejo Santo	Milagres		
PB	Sertão Paraibano	Cajazeiras	Bonito de Santa Fé		

		Monte Horebe
-		Conceição
	ltaporanga -	Itaporanga
		Serra Grande
		São José de Caiana
		Patos
	Patos	Quixabá
_		Santa Teresinha
		Catingueira
		Coremas
	Pianco	Emas
	Platico	Igaracy
		Olho d'Água
		Piancó
		Santa Luzia
Borborema Sertão Paraibano	Seridó Ocidental Paraibano	São Mamede
		Várzea
	Sousa	Condado
	Jousa	Malta

Partindo da SE existente Milagres II, no município de Milagres, o corredor segue retilíneo no sentido leste, com pequena inclinação a norte, por cerca de 120 km antes de alcançar a primeira inflexão. Nesse trecho, o corredor abrange principalmente áreas de agropecuária, vegetação nativa e a área urbana de alguns municípios, todas passíveis de desvio. No município de Mauriti, o corredor abrange o eixo norte do canal de transposição do rio São Francisco, que está disposto no sentido sul-norte. Da parcela abrangida pelo corredor, uma parte do canal se encontra a céu aberto, disposto em um vale, e outra se encontra no túnel Cuncas I, construído para vencer o desnível altimétrico na região (Figura 19).

(Fonte: Google Earth Pro – Data da imagem: 05/03/2016)

Figura 19 – Saída da SE Milagres II e elementos socioambientais relevantes

No limite estadual entre Ceará e Paraíba, o corredor perpassa por uma região de relevo acidentado, constituído por morros e serras baixas. No município Bonito de Santa Fé-PB, o corredor atravessa um planalto, com declividade mais suave, por aproximadamente 25 km. No município São José de Caiana, o corredor voltar a abranger uma região de morros e de serras baixas, com declividade mais acentuada. Ao longo de todo o corredor, essas são as regiões onde o relevo é mais acidentado.

No município Piancó, o corredor faz sua primeira inflexão, delineada para desviar de um grupo de projetos de assentamento do Incra que situam-se próximos. Ainda assim, o corredor abrange totalmente o PA Juazeiro I e parcialmente o PA Nossa Senhora Aparecida, visto que a norte, o desvio do corredor é limitado pelo açude Coremas. Ressalta-se que esses PAs são passíveis de desvio pela futura LT (Figura 20).


(Fonte: Google Earth Pro – Data da imagem: 25/09/2014)

Figura 20 – Aspectos socioambientais relevantes, em especial o açude Coremas e os projetos de assentamento, que motivaram as inflexões do corredor

No município Emas, o corredor faz sua última inflexão, a partir de onde segue retilíneo até a SE Santa Luzia II. Nesse trecho há predomínio de vegetação nativa em relação à agropecuária. Destaca-se o açude Cachoeira dos Cegos, que ocupa relevante parcela do corredor, havendo, contudo, possibilidade de desvio. Ainda no município Catingueira, no distrito Itajubatiba, localiza-se uma área antiga de mineração de ouro e outros polígonos minerários em fases diversas.

Mais à frente, o corredor abrange parcialmente a área urbana do município Patos e integralmente a área urbana do município São Mamede, antes de alcançar a SE Santa Luzia II. O relevo nessa região é aplainado, porém nota-se no corredor a presença de inselbergues, onde as cotas altimétricas são maiores que o entorno. Devido à diferença altimétrica, essas formações ganham destaque na paisagem local e acrescentam potencial turístico à região. A Serra do Saquinho e o Pico do Iaiu, nas proximidades da SE Santa Luzia II, são exemplos desse tipo de formação (Figura 21).

(Fonte: Google Earth Pro – Data da imagem: 14/06/2016)

Figura 21 – Exemplos de inselbergues abrangidos pelo corredor no município Patos. As variações altimétricas estão exageradas na imagem para facilitar a identificação dos mesmos

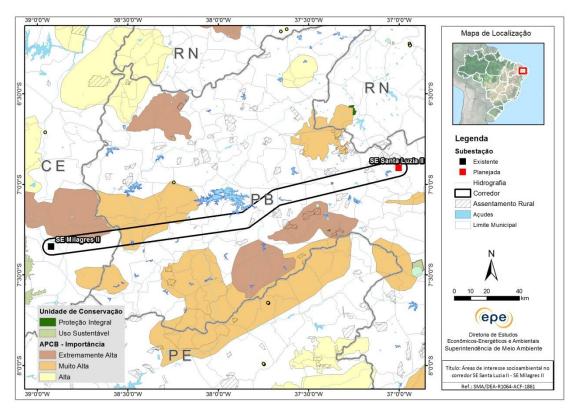

O corredor abrange duas áreas prioritárias para conservação da biodiversidade (APCB), conforme Tabela 11.

Tabela 11 – APCBs no corredor SE Santa Luzia II – SE Milagres II

Nome	Importância	Ação Prioritária
Kariris	Extremamente Alta	Cria UC - Indef.
Piranhas	Muito Alta	Cria UC - Indef.

Ressalta-se que há possibilidade de desvio da APCB Kariris, presente apenas na parcela superior do corredor, mas que a APCB Piranhas se sobrepõe a toda a largura do mesmo, não havendo possibilidade de desvio (Figura 22).

(Fonte: Eletrobras, 2011; IBGE, 2009; Incra, 2016; MMA, 2007; MMA, 2016)

Figura 22 – Áreas de interesse socioambiental no corredor SE Santa Luzia II – SE Milagres II

O corredor abrange quatro projetos de assentamento do Incra, conforme Tabela 12. O PA Cristo Redentor, localizado no município de Itaporanga, e o PA Juazeiro I, no município de Olho D'água, são totalmente abrangidos pelo corredor, contudo passíveis de desvio pela diretriz da futura LT.

Tabela 12 - Projetos de assentamento no corredor SE Santa Luzia II - SE Milagres II

Projeto de Assentamento	Nome do Município	Ano de Criação
PA Cristo Redentor	Itaporanga	2009
PA Juazeiro I	Olho D'água	2007
PA Nossa Senhora Aparecida	Emas	2007
PA Nossa Senhora Aparecida II	São Mamede	2011

O corredor abrange cinco açudes no estado da Paraíba, de acordo com a Agência Executiva de Gestão das Águas do Estado da Paraíba (AESA). Ressalta-se que todos são passíveis de desvio pelo corredor (Tabela 13).

Tabela 13 – Açudes abrangidos pelo corredor SE Santa Luzia II – SE Milagres II no estado da Paraíba

Açude	Nome do Município	Executor
Açude Bartolomeu I	Bonito de Santa Fé	SRH-PB
Açude Emas	Emas	Suplan
Açude Cachoeira dos Cegos	Catingueira	Suplan
Açude Coremas	Coremas	Dnocs
Açude São Mamede	São Mamede	-

O corredor engloba apenas uma unidade de conservação, a RPPN Fazenda Tamanduá, localizada no município Patos. Sua localização e seus limites exatos não constam nas bases consultadas e deverão ser verificados nos relatórios subsequentes.

De acordo com o Iphan, os municípios Mauriti e Milagres, no Ceará, e os municípios Santa Luzia, São Mamede e Várzea, na Paraíba, possuem sítios arqueológicos cadastrados.

De acordo com a Fundação Cultural Palmares, os municípios Coremas e Várzea, ambos na Paraíba, possuem terras quilombolas certificadas, mas sem localização precisa. O município Santa Luzia possui uma TQ certificada, mas que não é abrangida pelo corredor.

De acordo com o Cecav, o corredor não abrange cavernas, porém vale ressaltar que o mesmo perpassa áreas com graus de potencialidade de ocorrência de cavernas alto e muito alto (Figura 4).

De acordo com DNPM, o corredor se sobrepõe a 158 polígonos de processo minerário em diversas fases, com destaque para seis processos em regime de concessão de lavra, sendo cinco deles para extração de granito, próximos à SE Milagres II, e oito processos em regime de licenciamento.

Os principais acessos são a rodovia BR-116, que cruza o corredor nas proximidades da SE Milagres II, a rodovia BR-361, que o acompanha entre os municípios Piancó e Patos, e a rodovia BR-230, nas proximidades da SE Santa Luzia II. Outras rodovias estaduais e estradas vicinais estão dispostas ao longo de todo o corredor.

De acordo com as bases geográficas consultadas, o corredor não abrange terra indígena, comunidade quilombola nem caverna.

Recomendações para o Relatório R3

O corredor SE Santa Luzia II – SE Milagres II não apresenta aspectos de grande complexidade socioambiental. A seguir, são apresentadas as principais recomendações para a definição da diretriz da futura LT.

- Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor;
- Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude
 Cachoeira dos Cegos;
- Avaliar interferências com processos minerários para definição da diretriz, especialmente aqueles que se encontram em regime de concessão de lavra ou licenciamento;
- Atentar para a presença de formações do tipo inselbergs ao longo do corredor, por se tratar de locais de interesse paisagístico e de potencial turístico;
- Desviar a diretriz da futura LT das áreas urbanas abrangidas pelo corredor;
- Verificar se a diretriz da futura LT interfere com os sítios arqueológicos cadastrados no Iphan;
- Verificar os limites da RPPN Fazenda Tamanduá, localizada no município de Patos-PB,
 e evitar a travessia dessa UC pela diretriz da linha de transmissão planejada;
- Avaliar a existência de cavernas, visto que o corredor abrange trechos com grau de potencialidade de ocorrência de cavernas alto e muito alto;
- Buscar a localização exata das TQs nos municípios Coremas e Várzea.

REFERÊNCIAS BIBLIOGRÁFICAS

Campina Grande. Lei Complementar № 003, de 09 de outubro de 2006. Revisão do Plano Diretor. Campina Grande, 2006.

Cecav. Centro Nacional de Pesquisa e Conservação de Cavernas, 2015. Mapa de Ocorrências de Cavernas – ICMBio. Disponível em: http://www.icmbio.gov.br/cecav//. Acesso em: Dezembro de 2015.

DNPM. Departamento Nacional de Produção Mineral, 2016. Processos Minerários (arquivos vetoriais). Disponível em: http://sigmine.dnpm.gov.br. Acesso em: Julho de 2016.

Eletrobras. Centrais Elétricas Brasileiras SA, 2011. Base cartográfica dos limites das UCs Estaduais e Municipais.

FCP. Fundação Cultural Palmares, 2016. Base da Distribuição Municipal de Quilombos Titulados. Disponível em: http://www.palmares.gov.br/. Acesso em: Julho de 2016.

Funai. Fundação Nacional do Índio, 2016. Base Cartográfica Delimitação das Terras Indígenas do Brasil. Disponível em: http://mapas.funai.gov.br. Acesso em: março de 2016.

ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade, 2016. Base Cartográfica das Reservas Particulares do Patrimônio Natural. Disponível em: http://sistemas.icmbio.gov.br/simrppn/publico/. Acesso em: Janeiro de 2016.

IBGE. Instituto Brasileiro de Geografia e Estatística, 2009. Base Cartográfica Integrada ao Milionésimo. Disponível em: www.ibge.gov.br. Acesso em: Junho de 2012.

Incra. Instituto Nacional de Colonização e Reforma Agrária, 2016a. Mapa de Projetos de Assentamento – SIGEL. Disponível em: http://sigel.aneel.gov.br. Acesso em: Janeiro de 2016.

_____. Instituto Nacional de Colonização e Reforma Agrária, 2016b. Mapa de Território Quilombola. Disponível em: http://acervofundiario.incra.gov.br/i3geo/datadownload.htm. Acesso em: Janeiro de 2016.

Iphan. Instituto do Patrimônio Histórico e Artístico Nacional, 2016. Cadastro Nacional de Sítios Arqueológicos. Disponível em: http://www.iphan.gov.br/. Acesso em: Julho de 2016.

MMA. Ministério do Meio Ambiente, 2007. Mapa das Áreas Prioritárias para a Conservação, Uso Sustentável e Repartição de Benefícios da Biodiversidade Brasileira – Probio. Disponível em: http://mapas.mma.gov.br/i3geo/datadownload.htm Acesso: Agosto de 2012.

MMA. Ministério do Meio Ambiente, 2016. Instituto Chico Mendes de Conservação da Biodiversidade. Mapa de Unidades de Conservação Federais e Estaduais. Disponível em: http://mapas.mma.gov.br/i3geo/datadownload.htm Acesso em: Janeiro de 2016.

USGS. United States Geological Survey, 2012. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Disponível em http://gdex.cr.usgs.gov/gdex/. Acesso em: Junho de 2012.

APÊNDICE A – TABELA DE COMPARAÇÃO DA SE SANTA LUZIA II (500/230 KV)

SE Santa Luzia II (525/230 kV)

Tabela 1 – Comparação da localização da SE (Relatório R3) com o proposto no Relatório R1

Responsável pelo preenchimento:

Contato do Responsável:

Data:

Comparação da localização da SE (Relatório R3) com o proposto no Relatório R1

No caso de localização da SE Santa Luzia II em local diferente do indicado no Relatório R1, indicar justificativa(s):

- 1. Anexar mapa indicando a localização proposta para a SE Santa Luzia II no Relatório R3, e os principais fatores socioambientais que influenciaram essa localização.
- 2. Coordenadas da localização proposta para a SE Santa Luzia II:
- 3. Anexar arquivo Kmz da localização da subestação

Pontos notáveis verificados no Relatório R3, não identificados no Relatório R1

	Recomendações do Relatório R1 e atendimento no Relatório R3						
	Recomendações do R1	Foi atendida a recomendação? Se não, justificar.					
1.	Afastar o ponto sugerido para a implantação						
	da subestação das áreas com processos						
	minerários ativos, em especial os que estão						
	em fase de concessão de lavra, e buscar junto						
	ao DNPM possíveis atualizações nos						
	processos existentes.						
2.	Evitar posicionar a subestação nas						
	proximidades da Serra do Saquinho e do Pico						
	do laiu, já que se trata de áreas com						
	potencial turístico e paisagístico.						

APÊNDICE B – TABELA DE COMPARAÇÃO DA LT 500 KV SANTA LUZIA II – CAMPINA GRANDE III

	LT 500 kV SE Santa Luzia II – SE Campina Grande III				
	Tabela 1 - Comparação da diretriz da LT (Relatório R3) com o proposto no Relatório R1				
Re	Responsável pelo preenchimento:				
Со	Contato do Responsável:				
Da					
	Comparação da diretriz da linha de transm				
_	rensão do eixo do corredor (R1): 124 km	Extensão da diretriz da LT (R3):			
	riação da extensão e principal(ais) motivos:				
A c	liretriz está inteiramente inserida no corredor? No caso de não inserção da diretriz do R3	no corrodor do P1 informar os motivos:			
	NO Caso de Hao Hiserção da diretriz do Ks	s no corredor do K1, informar os motivos.			
1 -	Anexar o mapa contendo o corredor estudado r	no Relatório R1 e a diretriz proposta no Relatório			
	e os principais fatores socioambientais que infl				
2 -	Encaminhar arquivo digital da diretriz definida r				
	Pontos notáveis verificados n	o R3, não identificados no R1			
	Recomendações do R1				
	Recomendações do R1	Foi atendida a recomendação? Se não, justificar.			
3.	Evitar interferência direta com o Projeto de				
	Assentamento José Antônio Eufrouzino,				
	situado no município de Campina Grande/PB.				
4.	Evitar interferência direta com as duas zonas				
	especiais de interesse ambiental definidas no				
	Plano Diretor do município de Campina				
	Grande/PB.				
5.	Avaliar a existência de cavernas, em especial				
	no trecho oeste do corredor.				
6.	Avaliar a situação dos processos minerários				
	situados na área do corredor e possíveis				
	interferências impeditivas para passagem da				
	LT.				
7.	Evitar interferência direta com o Território				
	Quilombola Serra do Talhado, localizado no				
	município de Santa Luzia/PB.				
8.	Atentar para a presença de 39 sítios				
	arqueológicos cadastrados pelo Iphan e 2				
	territórios quilombolas registrados pela FCP				
	TELEVISION MANORINA LOGISTICA AGOS POTO 1 OF				

nos municípios atravessados pelo corredor,					
buscando	localizar	tais	áreas	e	evitar
proximida	de.				

APÊNDICE C – TABELA DE COMPARAÇÃO DA LT 500 KV SANTA LUZIA II – MILAGRES II

LT 500 kV SE Santa Luzia II – SE Milagres II					
Tabela 1 - Comparação da diretriz da LT (Relatório R3) com o proposto no Relatório R1					
Responsável pelo preenchimento:					
Contato do Responsável:					
Data:					
Comparação da diretriz da linha de transmissão (R3) com o corredor estudado no R1					
Extensão do eixo do corredor (R1): 222 km	Extensão da diretriz da LT (R3):				
Variação da extensão e principal(ais) motivos: A diretriz está inteiramente inserida no corredor?					
	no corredor do R1, informar os motivos:				
No caso de nao inserção da directiz do na	, no corredor do N1, miormar os motivos.				
1 - Anexar o mapa contendo o corredor estudado R3, e os principais fatores socioambientais que infl 2 - Encaminhar arquivo digital da diretriz definida i	uenciaram a diretriz.				
Pontos notáveis verificados r	o R3, não identificados no R1				
Recomendações do R1 e atendimento no R3					
Recomendações do R1	Le atendimento no R3 Foi atendida a recomendação? Se não, justificar.				
Recomendações do R1 1. Evitar interferência direta com os quatro					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor.					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor.					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos.					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos minerários para definição da diretriz,					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos minerários para definição da diretriz, especialmente aqueles que se encontram em					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos minerários para definição da diretriz, especialmente aqueles que se encontram em regime de concessão de lavra ou					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos minerários para definição da diretriz, especialmente aqueles que se encontram em regime de concessão de lavra ou licenciamento.					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos minerários para definição da diretriz, especialmente aqueles que se encontram em regime de concessão de lavra ou licenciamento. 4. Atentar para a presença de formações do					
Recomendações do R1 1. Evitar interferência direta com os quatro projetos de assentamento abrangidos pelo corredor. 2. Evitar interferência com os açudes abrangidos pelo corredor, principalmente o açude Cachoeira dos Cegos. 3. Avaliar interferências com processos minerários para definição da diretriz, especialmente aqueles que se encontram em regime de concessão de lavra ou licenciamento. 4. Atentar para a presença de formações do tipo inselbergs ao longo do corredor, por se					

urbanas abrangidas pelo corredor.

6.	Verificar se a diretriz da futura LT interfere	
	com os sítios arqueológicos cadastrados no	
	Iphan.	
7.	Verificar os limites da RPPN Fazenda	
	Tamanduá, localizada no município de Patos-	
	PB, e evitar a travessia dessa UC pela diretriz	
	da linha de transmissão planejada.	
8.	Avaliar a existência de cavernas, visto que o	
	corredor abrange trechos com grau de	
	potencialidade de ocorrência de cavernas	
	alto e muito alto.	
9.	Buscar a localização exata das TQs nos	
	municípios Coremas e Várzea.	